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Chapter One

INTRODUCTION
1.1 Dackground Information

The International Gravity Standardization Net 1971 (IGSN 71)
produced a world-wide gravity reference system of gravity base stations
having a standard error for each station less than 0.1 mgal,

5

1 mgal = 10° nlsz. using absolute, pendulum, and gravity meter

measurements [Morelli, et al., 1974]. See Table 1 for a summary of the
measurements used in the IGSN 71 which indicates thnt'tho most widely
used gravity meter in the IGSM 71 was the LaCoste & Romberg gravity
meter. HNowever, since the IGSN 71 results were adopted by the
International Union of Geodesy and Geophysics (IUGG) in Moscow, 1971,
and subsequently published [Morelli, et al., 1974), there has developed
an ever increasing desire to obtain better values of gravity for
gravity base stations.

Given an existing gravity base station network, the only way the
standerd error for the stations can be improved is by using new
information. This new information can be in the form of either new

measurements or improved modelling of the relationship between the

observed quantities and the derived quantities.
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Table 1 =~ Summary of data used in IGSN 71.

Type of Number of
Instrumsent Instrument Instruments
ABSOLUTE Cook 1
(Y b Sakuma 1
Faller-Hammond 1
PENDULUM Sul ¥ 2
€1200) Cambridge 1
16C 2
usces 2
po 1
Gs1 1
GRAVITY LaCoste~Romberg 53
METER Horden 16
(26000 Askania 2
North American 2
Nestern 3

Frequency
of Use

1 station
1 station
9 station

23 trips
12 trips
trips
trips
trip
trips

® - N S

98 trips
12 trips
6 trips
8 trips
2 trips

The quantities in parentheses represent the approximate number of

measurements msade with each class of instruments.
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If new measurements are made, they can be classified as either
absolute or relative in nature. Absolute measurements made uwith
absolute measuring apparatus are used to determine the value of gravity
which is the magnitude of the vertical gradient of the geopotential
[Mueller and Rockie, 1966, pp 43—44], at a station by measuring the
time it takes an object to fall a specific distance. The value of
gravity obtained is the resultant of gravitation and the centrifugal
force caused by the rotation of tha earth [Mueller and Rockie, 1966,
pPp %3-=64]. The physical dimension of gravity is an scceleration with
its magnitude, in the geodetic community, given in either gal. mgal or
lgal where 1 gal = 0.01 n/sz. 1 gal = 1000 mgal, and
1 mgal = 1000 lugal. The value of gravity varies on the earth's surface
from about 978 gal at the equator to about 983 gal at the poles
[Heiskanen and Moritz, 1967, p 48].

Relative measurements are made using gravity meters. Gravity meters
do not haQ- the direct capability of measuring the absolute value of
gravity but they are used to measure the difference in gravity between
two stations. For gravity base station networks, the most commonly
used gravity meter is the LaCoste & Romberg 'G' gravity meter
manufactured by LaCoste & Romberg, Inc.. Austin, Texas. This gravity
meter uas designed to be able to be used anywhere on the surface of the
earth. S$Since the approximate gravity difference between the equator
and the poles is about 8 gal, in order te insure world-uide measuring
capabilites, the gravity meter has » measuring range of approximately

7 gol and 1s adjusted to work within the range of absolute gravity from

- . o L T I S . . LA ot P - PR P A S




A %e e duve Beme sawe Diee aeesn )

approximately 977 gal to 984 gal.

It is obvious that {f the gravity values of a feu stations were
desired, and if time and funds presented no problem, the best method to
obtain the stations' gravity values would be to make absolute gravity
determinations at each station using either a transportable absolute
gravity iolsurlng apparatus or by installing a permanent absolute
gravity measuring apparatus. However, due to restrictions on time
and/or funds, this is not always feasible when the values of gravity at
8 large number of stations are desired. It takes approximately 2 to
& days to set up and to make each absolute gravity determination.

Thus, if only one absolute gravity measuring apparatus were used, it
would take about 3 years to establish a gravity base station network of
300 stations, assuming the absolute apparatus werked continueusly. To
reduce the time required, gravity base station netuworks are established
in which the gravity values of stations are resoclved from relative
gravity meter observations and the control is provided by a few
stations whose gravity value has been determined by absolute gravity
measuring apparatus.

The standard errors that can be asscciated with the gravity values
of the stations in such » netwoerk depend, not only on the distribution
and quality of the gravity meter esbservations and the abselute gravity
value determinations made, but also on how well the relationship
between the observed quantities and the derived quantites can be

represented, i.e. mathematically modelled.
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1.2 Deagriptien of Preaent Study

The nature of this study is to investigste the behavior of the
LaCoste & Romberg 'G' gravity meter and develop a mathematical model
which approximates this behavior. In order to test the mathematical
models developed, data from the United Stated Gravity Base Station
Netuwork will be used. The majority of this data was obtained along the
Mid-Continent Calibration Line which is located along the eastern side
of the Rocky Mountains from New Mexico to Montana. Aleng this
Mid-Continent Calibration Line, eleven absolute gravity stations were
established at intervals of approximetely 200 mgal to provide control.
The vast majority of the gravity meter observations were made with a
number of LaCoste & Romberg G’ gravity meters with the remainder being
wade with two LaCoste & Romberg "D’ gravity meters, 'D17' and 'Dé43°.
LaCoste & Romberg "D’ gravity meters werk over a very limited gravity
difference of approximately 200 mgel but can be adjusted to work
anywhere in the range of tho-}aCOst. & Romberg "G’ gravity meter.

In order to understand what causes the LaCoste & Romberg 'G' gravity

wmeter to behave as it does, a review of the assembly and testing

procedures used in its construction will be done. Most of the
o information about the gravity meter nes based on first hand accounts

obtained during a vistit in December, 1980, to the LaCoste & Romberg,

— Inc. facilities in Austin, Texas.

s From the information obtained about what goes into the constructien
5; and production of a G’ gravity meter, attempts will be made to develop
4

IT s more representative mathematical model of the instrument's behavior.
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Ancther area to be explored is the method that could be used to
‘3 indicate where new mesasurements, absolute or relative, should be made

in order to improve any existing gravity base station network.
% 1.3 Reviey of Previous Studies -

Various mathematical models have been proposed and used to model the
behavior of the LaCoste & Romberg 'G°* gravity meter [Morelli et al,
1974; Torge and Kanngieser, 1979]. There are basically two different
types of models. One type of model uses as its cbservable the value in
milligals of the observed gravity meter counter reading interpolated
from the Calibration Table 1 supplied with each gravity meter [Uotila,
1974]; the other type of model uses the difference in value in milligal

between two consecutive g?.vity meter observations as it observable

[{McConnell and Gantar, 1974; Whalen, 1974; Torge and Kanngieser, 1979].
fach model differs further in what parameters are included and houw they
are related. Some models include possible relationships for linear

!!; gravity meter drift [Uotila, 1974]. One model even postulates a

’. relationship invelving the square of stations® gravity values [Torge

and Kanngfieser, 1979].

b One thing that is cemmon for models proposed to date is that the
;.' Calibration Table 1 which is used to convert gravity meter counter

? ‘ readings to their values in milligal is assumed to be correct except
.

;t, for a linear scale factor which needs to be applied to all the values

in milligal. Models have been proposed that include additional higher

order scale factor terms [Uotila, 1974; Torge and Kanngieser, 1979].
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Due to the construction of the LaCoste & Romberg G’ gravity meter,

there is & possibility of a periodic variation in the counter readings

—y—r—y = d
v T e T i
. RERER A ST e

being introduced due to imperfections in the gear reduction system
[Kiviniemi, 19746]. The amplitude of this effect has been estimated to
be as large as 0.04 mgal [Torge and Kanngieser, 1979]. The attempts to
solve for this periodic effect have resulted in no clear conclusion of
its existence. One reason might be that the Calibration Table 1 is
being used as » standard and assumed to be error free, thus masking the
existence of the periodic sffect. Another possibility is that the
mathematical models proposed by Torge and Kanngieser [1979] are not be
appropriate. Further, the control provide by the absolute gravity
sites might not be distributed appropriately and be of high enough

accuracy to solve for the periodic effects.

To better understand the requirements of the mathematical model
needed to represent the behavior of the LaCoste & Romberg °'G' gravity

meter, it is necessary to know how the gravity meter is constructed and

Aiiliﬂ:aﬂ.

how {1t works.
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CHAPTER TWO
LACOSTE & ROMBERG TGT GRAVITY METER

2.1 Instruyment's Developwent and Hiatery

The LaCoste & Romberg "G" gravity meter is a relative gravity
measuring device designed to be used anywhere on the land surface of
the earth. To achieve world-wide measuring capability, the "G" gravity
meter must be able to measure differences in gravity as large as 5 gal.
To satisfy this requirement, the "G" gravity meter was designed to be
able to measure differences of nﬁproxi-.toly 7 gal and adjusted to work
within the range of absolute gravity from approximately 977 gal to
984 gal. The smallest difference that can be determined directly from
the "G" gravity wmeter cbservetions cerresponds to approximately
10 ugal.

The first LaCoste & Romberg land gravity meter was manufactured in
1939 and was the predecessor of the present "G gravity aeter.

CO-pcr;d to the present "G™ medels being mesnufactured, the first land
gravity meter was much bigger and heavier. The current "G" gravity
meters being manufactured and used are approximately 20 om in length,
18 om in width and 28 om in height with esch weighing approximately
3.2 kilograms excluding batteries [LaCoste & Romberg, 1981]. To date,

in the neighborheod of 600 LaCeste & Romberg 0" gravity meters have
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been built, with the current preduction level running about 30 to 40
meters per year. Each "G" gravity meter requires approximately 8 to 12
seeks to construct and test from the start of meter building until the
gravity meter is delivered to the customer. However, due to the
current large demand for the "G™ gravity meter and the shortage of
qualified gravity meter builders, the lead time is running around two
years for the delivery of a "G" gravity meter [Perry, 1988, private

communication].

2.2 Changss Made in ZG” Sravity Meter

The actual internal workings of the "G" gravity meter have basically
remained the same since the first one was manufactured in 1939. The
ma jor design changes that have occurred have been cosmetic to tha meter
case. The changes were made to reduce the size and weight of the
gravity meter and to allow for electronic improvements and options such
as electronic readout capability which is one of the options available
on the "G" gravity meters. However, starting with meter °'G-458', a new
gear reduction system (gear hox) was installed into the "G" gravity
meter. This gear box changes the gear ratios in additien to changing
the type of gear box [Perry, 1980, private communication]. A detailed

description of what this change affected is given in Section 2.4.2.

2.3 hat Ross 2 Sravity Mater Re?

An observation, 0, made with a "0" gravity meter at a station is

related to the absolute gravity value at the station by the following
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relation:
f(0) +C+S=4G (2.1
where

~

¥(0) - some functional relationship of the gravity meter's

observation,

c = corrections that make the functien £(0) independent of the

epoch of the ehsofvatien.

$ -~ an unknown offset value that must be added to obtain the

correct absolute gravity value for the station,

G - absolute gravity value for the station.

Assuming that the unknoun, 8, is constant for an instrument during a
particular time period, and the functional relationship, f(0), does not
change during that time pericd, the gravity difference between two
consecutive observations at station i and station j. can expressed by

f(o,) - f(oj) +C - cj =G, - Gj 2.2)
where the subscript {1 refers to events at station i at one epoch and
subscrip& j refers to events at station j at another epoch.

Eliminating the unknown offset, $, from equation (2.2) does not mean
that the value of 8 is not needed. By this method, the value of the
unknown offset, 8, remains unknown but does not enter directly into
equation (2.2). However, the value of 8§ is still needed, as can be
seen in equation (2.1), to determine the gravity value of a station.

In order to determine a value for 8, it requires that at lesst one
station’s gravity value in the network be known. This implies that no

matter how many squations similar to equation (2.2) are formed, the
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system of equations will have a rank deficiency of at least one as the
result of the unknown value of offset S. The exact rank deficiency of
the system will depend on the functional relationship, €(0), used. The
rank deficiency of the system determines the minimum number of stations

whose value of gravity is required to be known.

2.4 Jnternal Components of the TG™ Cravity Meter

The LaCoste & Romberg ™G™ gravity meter can be thought of as
consisting of tuo major components, the metgr case and the mgtgr box.
The meter case which houses the meter box consists of the external
casing including top, insulating material. slectrical somponents.
levelling screws. temperature probe end the heater box. The levelling
bubblien, however, are part of the meter box and not part of the meter
case.

The meter box is a mechanical-optical device which can be thought of

consisting of four major inter—connected assemblies: gear train,

measuring screw. lever linkage and optical system.
2.4.1 Meter Cass

The meter case houses the meter box. The meter case is insulated to
protect the meter from changes in the ambient temperature. Changes in
the operating temperature of the maeter box have a marked effect on the
gravity meter readings [Kiviniemi, 1974]. To insure a constant
operating temperature, the meter box is installed in a heater box which

requires a small amount of electrical power to keep the instrument at
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operating temperature. The optimum operating temperature to be
ntained is determined from test procedures after which the heater

is adjusted to maintain that operating temperature for the
trument. A temperature probe is installed in the meter case to

mit the user to verify that the instrument is at its operating
perature and that the heater box is working properly. The
uiation also acts as a shock absorbing material in case the gravity
er were to be accidentally jarred or dropped.
The gravity meter can be used to make consistent observations only
er the instrument's operating temperature has been attained and
ntained for a length of time. MKhen this occurs the instrument is
d to be on=heat. The recommended length of time of being on-heat
ore observations should be made is about four hours [Perry, 1980,
vate communication]. 1If the power is interrupted for any length of
» and the temperature of the ;nstruucnt falls below its operating
serature, the instrument is said to be gff-heat. 1If an instrument
3 off—heat, it must be put back on—~heat before it can be used to
» additional observations. Any gravity meter differences determined
' the meter was off-heat must not be considered as part of
wrvation set. This means that the gravity meter must be on-heat

ng its transportation between stations when observations are being
3
‘he top of the meter case is removable to permit the installation of
meter box. In addition, on the top will be a name plate which

tifies the instrument and, generally, below the thermometer opening

e . . - PP S S Y
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will be the value of the current null or reading line for the
instrument.

The meter case contains the levelling screw by which the gravity
meter is levelled. For a period of time, the LaCoste & Romberg "G"
gravity meters were manufactured with the thumb screws used for
levelling the gravity meter located on the bottom of the meter case.
But now, the instrument is being manufactured seo the levelling can be
adjusted via knobs that extend above the top of the meter case. This
modificiation does not affect the behavior of the instrument but makes
the levelling of tha instrument more cenvenient and reduces the h
possibility of jarring or moving the instrument when it is being
levelled [Perry, 1980, private communication].

In addition, all the electrical connections for the instrument are
housed in the meter case. These include the connections for the power
supply to operate the heater box and lamps and any optional electronic
devices such as the electronic readout. The electronic readout is
really pirt of the meter box since it basically consists of a set of
capacitor plates installed above and below the beam and a nulling
meter. As the beam moves between these plates, the change in the
capacitance is recorded on the nulling meter installed i{n the meter
case top. This nulling meter is then adjusted so when the instrument

fs in the null poesition, the nulling meter will be in its center

position [Hemingson, 1980, private communication].
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2.4.2 Natsr Rox Gear Iraip Aasembly

The gear train assembly shouwn in Figure 1 consists of the dial. dial
shaft, gounter and the gear box. The dial, which is turned to null the
instrument, has 100 equal divisions marked on it with each division
corresponding to 0.01 counter units. The counter is attached to the
dial shaft and is used to keep track of the number of rotations of the
dial shaft with one counter unit equivalent to one complete rotation of
the dial shaft. The counter records in 0.1 counter units from 0.0 to
6999.9. Physical stops within the counter prevent the dial from being
rotated outside this range. On the end of the dial shaft opposite the
dial is a toothed gear which drives the gears in the gear box.

There are two different types of gear boxes that have besen installed
in the "G™ gravity meters. The original gear box installed in
instruments prior to "0-4538" is referred to as the gld gear box. The
old gear box used 3 floating pivot gear system. In this system, the
dial shaft with its 17 tooth gear drove a 134 tooth floating pivot
gear. The floating gear, in turn, had a 20 tooth smaller gear which
drove a 1830 tooth gear on a shaft te which the messuring screw was
attachaed as shoun in Figure 2. The floating pivot gear was held in
contact with the dial gear and the measuring screw gear by spring
tonsion,

The gear box installed in meters built since meter *G-453' uses a
fixed pivet gear system and is referred to as the paw gear box. The
new Jear box uses a 30 tooth gear at the end of the dial shaft which

drives a 220 tooth fixed pivet gear. The fixed pivot gear in turn has
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Figure 1 — Schematic illustration of the gear train assembly used in
4 the LaCoste & Romberg "G™ gravity meter.
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Figure 2 — Schematic illustration of the old gear bex used in the
LaCoste & Romberg “G" gravity meter.
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. 8 30 tooth gear ~hich drives a 300 tooth gear on the shaft to which the
‘ acasuring screw is attached as shown in Figure 3.
.Hith the old gear box, 1206 rotations of the dial are required to
make the measuring screws rotate 17 times, » ratio of approximately
@! 70.941:1; with the new gear box, 220 rotations of the dial results in 3
rotations of the measuring screw, & ratio of approximately 73.333:1.
Just because a gravity meter originally had an old gear box
! installed in i1t does not imply that it will always have an old gear

box. 1If the gravity meter is returned to the factory for repairs, and

the gear box needs to be replaced, & new gear box might be used as a

replacement. Therefore, it is very important to know what components
are presently installed in the gravity seters being used because they
o;foet the modelling of the gravity meter's behavior. 1f there is any
doubt, the manufacture's log on the construction of each gravity meter,

which is maintained by LaCoste & Romberg, Inc., should be consulted.

2.4.3 MNetsr Rox Mapauring Screaw Asasmbly

The measuring screw moves within a hollow shaft which has threaded

fingers at the end furthest from the gear box as shown in Figure &.

f The rotation of the dial causes an angular motion of the measuring
scres. This angular motion of the measuring screw is converted to a

i; linear motion by the measuring screw threaded being in contact with the

] stationary threaded fingers. The maximum linesr motion of the
measuring scresx in a "O% gravity meter is on the order of 20 mm and
this motion is accomplished in less than 100 turns of the measuring

Y
ST
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Figure 3 — Schematic illustration of the new gear box used in the

LaCoste & Romberg "G" gravity meter.




— rfv —

i

g

e

.

19
screm [Perry, 1980, private communication).

At the end of the messuring screw furthest from the gear box, a
hardened metal jowel in the shape of a donut is set by a press fit into
the measuring screw as showun in Figure 5. The diameter of the hole in
the jeuel is less than 1 mm [Perry, 1980, private communication).

There are four set screws in the measuring screw which can be used for
minor centering adjustments of the jewel. Since there is a spherical
metal ball on the end of the lever linkage which makes contact with the
jewel, 1t is important that the jewel is shaped and positioned such
that the sphc;icll metal ball is almays in contact with the edge of the
jowel’s hole. 1If this is not the case, then the uniform rotation
motion of the screw could be translated inte a non—unifoerm motion of
the lever linkage resulting in the difference betwesen counter readings
for a given gravity difference not being constant. The actual
difference in counter readings would then depend on the starting

position of the dial for each counter reading.

2.4.4 Meter Rox Laver Linkage Asasmbly

The lever linkage consists of a lower lever, connecting linkage,
upper lever, zero length spring, beam and beam weight as shown in
Figure 6. This system is the heart of the gravity meter. Many
individual parts must be assembled to creste this delicate system. The
connecting linkage, for example, consists of » number of flat springs

screw clamped together and te other laver arms.
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figure 4 -~ Schematic fllustration of the measuring screw used in the
- LaCoste & Romberg "O" gravity meter.
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.- Figure 8 = Schematic fllustration of connection between the measuring
screw and the lever linkage used in the LaCoste & Romberg
) "g" gravity meter.
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Pigure 6 = Schematic {llustration of the lever linkage assembly used in
the LaCeste & Romberg ™G™ gravity meter.
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The measuring screw's jewsl is designed to be in continuous contact
with the spherical metal ball attached to the lower lever. The
spherical metal ball has been known to break loose from its suppert
post in which case the rough edges of the support post were in contact
with the jewel. This causes the difference in readings between gravity
stations to act very or;ltie which would boka definite indication that
the gravity meter needed to be repaired.

The beam with the beam weight at one end is permitted to move only a

fe thousands of an inch in the lateral and horizontal direction before

tt encounters physical steps [Hemingsen, 1980, private communication].
There is an arrestment kneb which permits the beam to be clamped
against the stops so that damage to the system can be minimized during
the transportation of the instrument.

The beam weight in addition to prév!ding necessary mass and balance
for the beam, provides the means of calibrating the instrument. How

this is accomplished is explained in section 2.8,

¢ 2.4.5 HNater Box QOptical System Assembly

’ The link between the lever linkage and the optical sy;ton is by
means of what is called the Jadder., which is suspended from the bottom

i . of the beam near the beam weight. This ladder consists of tuwo posts

;’ with a number of thin wire steps strung between the posts as shown in

i Figure 7.

EQ A set of prisms direct light which has passed through the ladder

g

onto an etched acale mounted on the meter box. The eyepiece is focused
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Figure 7 — Schematic illustration of the ladder sssembly used in the
LaCoste & Romberg "G" gravity meter.
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on this etched scale which produces an image similar to the one shown
in Figure 8.

The gross—hair viewed through the eyepiece is actually the shadow of
one of the thin wire steps of the ladder. Adjustments are made so only
one step can be viewed through the eyepiece [Hemingson, 1980, private
communication]. The step that is actually viewed depends on how the
prisms and light source are installed and the ladder is constructed.

To insure that a step can always be viewed, the ladder is constructed
with many steps.

The physical stops are sdjusted so the cross—hair will move
approximately six to seven scale divisions either side of the reading
or nyl] line. The reading line for the instrument is determined during
the construction of the instrument fellowing a procedure which allous
the builder to deduce when the beam is in the horizental or null
position. When the actual null position does not correspond exactly
with an etched scale division, the nesrest etched scale division is
selected as the reading line.

Two bubble levels mounted perpendicular to each other are installed
on the meter box. The levels used are generally 60 second levels but
the customer can request 30 second levels be installed [Hemingson,

1980, private communication]. These levels are adjusted so when they
are centered, the beam is horizontally positioned between its physical

stops when it is in its null pesition.
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EXAMPLE
READING LINE=2.3

CROSSHAIR

‘imlml]’lmlnnruhmIau‘l\lll_l'ufnulmf

\—SGCALE

VIEW AS SEEN IN EYEPIECE

re § - Schematic view through the eyepiece of the LaCoste & Romberg
PG” gravity meter.
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2.5 Calibration of the "Q" Gravity Mgter

During the construction of the gravity meter. tests are made on
various systems and assemblies in an attempt to ensure some type of
uniformity in the operational behavior of the instrument after it is
completed. Since minor differences in the parts used and the assembly
procedure will aluways exist, the bshavior of each instrument will be
unigue. Houwever, there does exist a general characteristic behavior of
the gravity meter caused by the non=linearity of the lever linkage
system [Harrison and LaCoste, 1978) which can be identified. The
general characteristic behavior that is sought is how differences in
counter unit readings at two sites are related to the gravity
di fference between the two sites. The method that enables this
relationship to be doéucod is commonly referred to as the galibration
procedure.

. The calibration procedure is a two step process. The first step,
which will be referred to as the factory calibration procedure,
determines the general behavior of the gravity meter over its operating
range by determining what will be called rgletive scale factors. The
second step, which will be referred to as the figld calibration
procedure, relates the gravity difference between two stations to the
di fference in counter unit readings between the stations enabling what
will be called the phaclute scals factors for the gravity meter to be

determined. The end product of the calibration procedure is the

Ealtibration Jable 1 which relates the gravity meter's counter readings

to their relative velues in milligals.
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To determine the general characteristic behavior of the gravity
meter requires that observations be made over the entire range of the
counter, from 0 to 6999 counter units. One way to accomplish this
would be to have the gravity meter make observations at various
stations with known gravity values distributed over the entire range of
the gravity meter. This of course would be time consuming, expensive
and impractical. Another way to achieve the same results would be to
somehow fool the gravity meter into thinking that the gravity valyo at
a site had changed.

Since the gravity meter works on the principle that the force on a
spring and the resulting change in the spring's length is related to
the muss it is suppoerting and the acceleration of gravity on that mass.
one way of achieving a change in the force mithout changing the
acceleration due to gravity would be to vary the mass being supported.
S0, if there were a way to change the mass of the gravity meter's besm,
tﬁon readings over the entire range of the gravity meter could be
obtained. Due to the construction of the gravity wmeter, the gravity
meter's beam acts as 2 lever. The effect of changing the mass of the
gravity meter‘s beam can be achieved by changing the center of mass of
the besm witheut actually changing the mass of the beam. An apparatus
wuas develeped uhich enables beth the center of mans of the beam to

change and masses te be added snd reseved from the beam. The name

given te this aspparatus is Llguderett, Jr.
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2.5.1 (Cloydereft. Jr. Apparatus

Cloudcroft, Jr. is a device that consists of two shafts that can be
screwed into the beam weight and & housing that is attached to the
meter box. See Figure 9 for a schematic view of the Cloudcroft, Jr.
apparatus. One of the shafts is threaded. On this threaded shaft is
placed the range adiustment nut which can be positioned anywhere along
the shaft by simply rotating that nut. The range adjustment nut acts
as a counter—balance and by moving it either towards or away from the
beam weight, it can be used to change the center of mass of the beam.
The other shaft has an opening at one end into which a pin can be
inserted. On the pertruding end df the pin is attached with a drop of
glue a thin wire which supports a mess which is referred to as & pob.
Two thin metal wafers called ngights rest on the top of the bob.

The housing that is attached to the meter box is referred to as the
bucket. It enables the weights to be lifted off and returned to the
bob by a process of raising and lowering the bucket. The bucket is
positioned so that when the bucket is raised, gho bob will descend
freely into the bucket. As the bucket is raised, each weight comes to
rest on a separate ledge of the bucket, which results in the mass being
removed from the beam. HWith this coenfiguration, efther both weights
are resting on the bob, the smaller weight is resting on the bob or
neither weight is resting on the bob.

Hith the weights being efther on or off the bob, the terms of

weight-on and weight-off are used respectively.
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Pigure 9 ~ Schematic illustration of the Cloudcroft Jr. calibration

apparatus used in the calibration LaCoste & Romberg ™G"

gravity meter.
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The weights used are very thin with very little mass. See Figure 10
for the approximate configuration of sach weight. The weights are
coenatructed in such way that when the larger weight is added to the
beam it causes a change of approximately 180 counter units. When the
smaller weight is added, it causes a change of approximately 20 counter
units. Since a change of one counter unit is approximately equivalent
to a change of one mgal, the larger weight is referred to as the 1380
agal weight and the smaller weight is referred to as the 20 mgpl
aeight.

Hith this system, changes of approximately 20, 1830 and 200 counter
units can be induced {n the gravity meter. And by moving the range
adjustment nut along the threaded shaft by means of a fork shaped
device, the gravity meter's counter can be made to read any value
within its range. The Couldcreoft, Jr. apparatus is installed to
perform the factory calibration and then removed prior to the field

calibration.

2.85.2 [actory Calibration Procedure

The factory calibration procedure is quite simple to perform but
someshat time consuming. The procedure normally takes from 10 to 12
hours to obtain the spproximate 120 observations required for
determining the relative scale factors over the eperating range of the
gravity meter. The steps invelved in thias procedure are: .

1) the Couldcroft, Jr. apparatus is installed and the meter is put

on—=heat.
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Figure 10 ~ Schematic {llustration of the configuration of the weights

used by the Cloudcroft Jr. apparatus.
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2) the range adjustment nut is adjusted in the weight-off position
to read a value nesr one end of the counter range.
3) null the instrument with the weight—off and record the reading.
4) null the instrument with the weight—on and recerd the reading.
5) repeat stopit).
6) repeat step 4.
7> adjust the range adjustment nut so the weight—off reading is
approximately 200 dial units larger or smaller depending on which
end of the counter range first set of cbservations were made.
8) repeat steps 3) through 7) until the oppeosite end of the counter
range is reached.
From the recorded obsorv,tions a set of differences, Lith each
di fference being the average di fference between the weight—on and
weight—off observations for a position of the range adjustment nut, is
determined. This sat of differences is then divided by an arbjitrary
value, generally aroun& 200, to produce a set of relative scale
factors. These relative scale factors relate houw the change in gravity
resulting from the addition of a constant mass varies over the range of
the instrument. The set of relative scale factors obtained is assumed
to be valid at the average of the weight—on and weight-off readings for
each position of the range adjustment nut. The set of relative scale
factors is then plotted against their average weight—on and weight-off
readings. Generally, the relative scele factors over the entire range
of the instrument are not permitted to vary by more than B parts in

1000. This is dene because the graph paper used for plotting these
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relative scale factors as 8 function of counter units at the scale
desired does not permit the relative scale factor to have any larger of
» vartation [Perry, 1980, private communication]. An arbitrary curve
that is supposed to represent the data points is drawn free hand or by
using a curve template. This curve is referred to as the gcplibratien
surve. See Figurs 11 for an example of the plotted data used to
produce the calibratien curve. The calibration curve produced will net
necessarily go through all the relative scale factor data points. The
discrepancy between the curve and the data points can be easily as
large as ; part in 10000 of the relative scale factor value. If the
resulting calibration curve shows any unexpected strange behavior such
a8 erratic dips or humps, attempts are made to remove the undesired
behavior by changing parts of the instruments such as the gear box
and/or the measuring screw [Perry, 1980, private communication]. The
last resort would be to medify or rebuild the lever linkage assembly.
If » component is replaced, such as 3 gesr box, it does not mean that
the one removed is bad and cannot be used again. Many times,
components removed from one instrument whose the calibration curve was
not satisfactory will not produce asny adverse effects in the
calibration curve when re=inatalled in another inastrument [Perry, 1980,
private couuunicailon].

The Calibration Table 1 for a gravity meter is determined prior to
the delivery of the gravity meter to the customer and is not altered
unless the gravity meter is returned to the factory and a major

medification, such as, replascing the measuring screw, gear box or long
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Figure 11 = A plot of relative scale factors for the LaCoste & Romberg
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lever [Perry, 1980, private communication]. This would imply that
there exists only one Calibratien Table 1 for sach gravity meter which
is valid at any time. The Calibration Table 1 s the result of factery
calibration procedures. The truth of the matter is that this is not
aluays the case which leads to a lot of confusion.

It appears that gho Geodetic Survey Squadron out of F. E. Warren,
AFB in Wyoming, which is responsible for making the majority of the
gravity meter observations in the United States, produces their own
Calibration Table 1. The difference between their Calibration Table 1
and the one previded by the msnufacturer is generally just a constant
scale factor applied to the values in milligal. A new Calibration
Table ] is produced periodically because it is believed that the
gravity meter’s calibration changes with time [Beruff, 1980, private
communicstion].

When the Geodetic Survey Squadron concludes that the calibration of
the gravity meter hes changed, it determines the scale factor that it
wishes to be apply to the value in milligal and often request LaCoste &
Romberg to produce a naw Calibration Table 1 for them using the same
format as the original Calibration Table 1 [Perry, 1580. private
communication]. In the process, due to round—off, the new Oeodetic
Survey Squadron's Calibration Table 1 values in milligal are net an
exact scale factor multiple of the original Calibration Table 1
supplied with the gravity meter. This makes it very difficult to
determine which Calibration Table 1 should be used because there neo

remark the Calibration Table 1 to indicate that the table has been
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modified. This perpetuates the notion that the calibration of the
gravity meters changes with time.

It is knouwn that by making changes in the lever linkage assembly,
the general characteristics of the calibration curve can be changed.
The prime exsmple of this is the gravity meter '6-253'. This gravity
meter was especially constructed so its calibration curve sas flat,
that is all the relative scale factors had the same value. This is
probably not exactly true but to within 2 to 3 parts in 10000, the
relative scale factors are the same. Given enough time and funds any
"G" gravity meter could be constructed with a flat calibration curve
(LaCoste, 1980, private communication].

Whether "G" gravity meters with flat calibration curves are better
than those that do not have flat calibration curves is hard to say
because only one "G" gravity meter is known to have such a
characteristic.

Once an acceptable calibration curve has been obtained, the

instrument is sent for its field calibration.

2.5.3 [Field Calibration Progadurg

The purpose of the field calibration procedure is to enable the
absolute scale factors to be determined. The absolute scale fectors
relate the counter units to their values tn milligal. This is
sccomplished by taking the instrument to an area near Cloudcroft, New
Mexico where two stations exist, Cloudcroft and La Luz, which have a

gravity difference of about 242 mgal. A number of repeated
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observations are made between these two stations. From these
observations an average counter difference is determined. The actual
gravity difference betuween Cloudcroft and La Luz is critical in as much
as the better the value, the closer the value in milligal feund in the
Calibration Table 1 will reflect true milligal units. This is
important only {f the Calibration Table 1's values in milligal are to
be used without being adjusted.

Using an assumed value for the gravity difference between these two
stations, a figld scale factor is computed. It relates the counter
unit difference to the value in milligal difference by dividing the
gravity difference by the average counter difference. Althougb the
field scale factor determined in this manner is truly only valfd.evor
the range of the readings used in its determination, the Calibration
Table 1 is assumed to be valid for the entire range of the gravity

meter.

2.5.4 Conatrustion of tha Calibratien Iakls )

After the factory and field calibration procedures have been
completed, the Calibration Table 1 is produced. See Table 2 for an
example of a Calibration Table 1 as supplied by LaCeste & Romberg, Inc.
It is very tmportant to understand how the Calibration Table 1 is
produced and what type of informatien this table does and does nhot
contain. This table relates counter readings to value in milligal. By
reading relative scale factor values off of the plotted calibration

curve at intervals of 100 counter units and starting at 80 counter
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units, a table of counter units and relative scale factors is produced.
These relative scale factors are assumed to be valid for plus/minus 50
counter units from the point on the calibration curve that the reading
was made. These relative scale factors are then all scaled by the
field scale factor to produce what is referred to as the factor for
interval. The factors for interval are assumed to be valid for
plus/minus 50 counter units; From this information, the Calibration
Table 1 is produced-which relates the counter readings to value in
milligal via the factors in interval.

In the Calibration Table 1, the factor for interval is assumed to be
valid for a range of S0 counter units etther side of its corresponding
counter reading. The value in milligal for a counter reading is
obtained by multiplying the factor for interval by 100 counter units,
which is the difference between two consecutive counter readings, and
adding {t to the previous value for the value in milligal. It should
be noted that the value in milligal is derived from the factor for
interval values and not the converse. 1f one assumes that the standard
error of the observed difference of gravity meter readings between
Couldecroft and La Luz is on the order of 0.025 counter units, then this
implies that the field ;ello factor determined and the corresponding

factor for interval of the Calibration Table 1 is accurate to about

1 part in 10000.




le 2 ~ Calibration Table 1 for the LaCoste & Romberg "G™ gravity

meter "0-220%.

TARLE )

MILLIGAL VALUES FOR LACOSTE & ROYAERG, INC. MODFL € GRAVITY METIR G- 220

VALUZ. IN

FACTOR POR

READING* MILLIGALS INTERVAL

000
100
200
300
400
Son
600

100
3200
3300
W00
1500

000,00
106.11
22.20
318,28
424,36
530,42
636,48
742,54
R4AR, 60
954.66

1060,72 .

1166.79
1272.86
1978.9%
1485.13
1591.12
1697.23
1801, 3%
1009.46
201%.59
2121.73
2227.8%
2334.03
2440.20
2546.38
2652,53
2758.79
2865.n2
2971.26
3077.52
183,79
3290.06
3394,33%
3502.63
608,97
° 371’.”

1.06106
1.06083
1.%6074
1.06n65
1.0606D
1.061%7
1.06087
1.06059
1.0606%
1.06067
1.06074
1.06"%0
1.06080
1.06MM7
1.06104
1.06113
1.06123
1.06128
1.06137
1.06146
1.061356
1.06149
1.06182
1.06197
1.06213
1.06228
1.06242
1.06255
1.06263
1.0627%
1.06289
1.0630m
1.06314
1.06328
1.06343

COURTER
READING*

© 3600

3700
nm
3900
4000
4100 .
4200
4300
4400
4500
4600
4700
ARNN
4onn
5000
$inn
5200
$300
5400
3500
$60n
$700
$800
5900
6000
6100
6200
6300
6402
65"
6600
6100
(L)
650N
000

VALUE IN

FACTOR POR

MILLIGALS  INTERVAL

3821.64
3928.%0
4034.36
4140.75
4267.14
4353.54
4459.95
4566.37
4672.80
4779.23
48185.66
4992.09
5008,52
504,95
i
5417.82
.5324.25
563n,68
3737.11

- 5843.53

5949.95
6056.36
6162.76
6269.15
6375.53
6481.89
65%%,23
6694,56
ARDN, 86
6207,14
7013.41
7119,.64
7228.86
733204
743018

1.06357
1.96369
1.06381
1.06392
1.06403
1.06412
).06420
1.06426
2.06428
1.06430
1.06431
1.06432
1,06433
1.0663)
1.n6433
1.06431
1.N6430
1.06427
1.06423
1.06418
1,06412
1,06403
1.06391
1.06376
1,06360
1.06343
1,06324
1.06304
1.06294
1.06261
1.96239
1.06212
1.06181
A.M61466

4 Notat Right-hand vhesl en ounter indicates spprramimately 0.} milligal.
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2.6 Jnatrymental Error Source

Hhenever the "G™ gravity meters behavior differs from that predicted
by a linear interpelation within the Calibration Table 1, there are two
possible explanations. One explanation is that the anomalistic
behavior is in fact present but the Calibratic~ Table 1 does not
contain thiys information. 1In this centext, short wave length refers to
wave length less than approximately 200 counter units. This situation
occurs when the short wave length behavior cannot be represented by the
long wave length information present in the Calibration Table 1. This
type of systematic error could be accounted for by additional
parameters in the mathematical model. An other explanation is that the
anomalistic beravior is erratic and random in nature and thus

-

impossible to be modelled. The majoer erraer sourcaes that fall into

either of these twe categories are pgriodic screw gffect, tares and

instrymental drift.
2.6.1 periodic Screw Effect

Due to the constructisn of the “O" gravity meter, there is »
possibility that an angular rotation of the dial will not preoduce a
strictly linear motion of the measuring screw. The departure from the
linear motion could be due to periedic errors in the wmeasuring scres,
eccentricity in the measuring screw resulting in a wobble or the
non-linearity of the lever linkage assembly [Harrison and LaCoste,
1978]. 1f the periodic error were in the measuring screw system and

could be related to the position of the dial and the counter, then
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there might be a way of modelling this effect.

There are two places in the gravity meter in which this type of
effect could be introduced. One place is in the gear box [Kiviniemi,
1974; Harrison and LaCoste, 1978] and the other is at the point of
contact between the measuring screw and the lever linkage.

The gear box could introduce a periodic effect into the observations
due to the eccentricities in the gears of the gear box [Kivineimi,
1974]. The period of this effect would depend on which gear box was
installed in the gravity meter. If the gravity meter has an old gear
box installed in it, then periods of 1206, 1206/17, 134/17 and 1
counter units could be present. If the gravity meter has » new gear
box installed in it, then periocds of 220, 220/3, 22/3 and 1 counter
units could be present.

The other place that a periodic effect could be introduced is at the
point of contact betueen the wmeasuring screw and the lever linkage.
This results when the ball on the lever linkage and/or the hole in the
hardenad jeuel s not sphericsl or circular in shape. I this were the
case, then each rotatien en the measuri—g screw would produce a type of
peried effect. Feor the old gear box, this effect would occur every
1206/17 counter units, while for the new gear box., this effect would
occur every 220/3 counter unita. HNote that the period of this period
effect is a function of the mhich gear box is installed in the gravity

meter.
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"2.6.2 lars

Jarg is a term which refers to unexplained changes in the reading
level of the "G" gravity meter. A tare in the gravity meter is
believed to be the result of small shifts of the components lever
linkage that are screw clamped together [Burris, 1980, private
communication]. Tares by nature are unpredictable but are easily
introduced. A rapid deceleration or acceleration of the gravity meter
is & common cause that will introduce a tare. This occurs when the
gravity meter is dropped or jarred especially when the beam is not
clamped. Therefore, it is very important that the arrestment knob be
turned fully clockuise, so that the beam is clamped wmhenever the
gravity meter is being moved.

Large tares, on the order of 150 Lgal or larger, are generally easy
to detect. But smaller tares can be very difficult to identify. Any
gravity meter tie suspected of containing a large tare should be
removed from the observation set. But there s little that can be done

$or the ties that contain the undetected small tares.

2.6.3 Instrumental Prift

The drift of the "G™ gravity meter i3 not totally understood at this
time. There appears to be no mechanical reason why readings made with
a properly adjusted "G" gravity meter should change with time other
than as & result of tares being introduced [Perry, 1988, private
communication]. It is believed that the so called instrumental dri+fe

is the cumulative result of a number of small tares in the gravity
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meter [Uotila, 19743 Burris, 1980, private communication]. The tares
occur randomly rather than uniformly which makes modelling of such an

effect very difficult, if not impossible.
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CHAPTER THREE
g! SRAVITY METER QOSERVATIONS

3.1 Qbaervations Used

For this study, observations were obtained from two governmental
oerganizations: the National Geodetic Survey of the National Dcean
Survey of the National Oceanic and Atmospheric Administration of the
United States Department of Commerce and the Geodetic Survey Squadron

stationed at F.E. Warren AFS, Wyoming of the Defense Mapping Agency

Hydrographic/Tepegraphic Center. The data obtained consist of over

4500 gravity meter observations made with 25 different '0' gravity

p.
{‘
P

meters and 2 different "D’ gravity meters. The majority of the
observations uwere made along the United States Mid-=Continent

Calibration Line which runs along the Eastern side of the Rocky

™

Mountains With stations in Texas, New Mexico, Colorado, Wyoming,

Montana and North Dakota. All observations were wmade during the period

T

. 19751980 and were received in the form of copies of the original

.

¢

t, ebservation sheets. See Table 3 for a listing of the gravity meters
- .

[ used. See Figure 12 for the geographical location of the stations in
4 .

_' the network and how they are intercennected.

i; The information supplied on the observation sheets consisted of the
9

g name of the observer, the instrument(s) being used, the station name,
£

-
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i: : Table 3 ~ Summary of the gravity meters used in study.

X Gravity Date on

oo Meter Calibration Number of Observations Made

s Number Table } Observations From To

E G-10 25/10/60 164 03/08/79 29/10/80

- G—44 25/704/63 14 10/02/78 15/02/78

- 6~47 22/05/63 18 10/02/78 18/02/78

- 6-80 15/06/63 17 11/08/78 11/08/78

- G~-68 23/03/64 61 05/10/76 26/10/76

;" G=-81 07/08/64 427 17/04/75 26/10/76

3 G-31la 17710777 171 11/01/78 30/10/80

- G~-103 07/09/68 128 11/01/78 02/10/79
G=-111 25/03/66 %27 17/04/75 26/10/76

g G-113 23/03/66 17 11/08/78 11/08/78

- 6~-115 09/08/66 369 17/04/75 10/11/78

4 G-118b 14/02/78 300 11/01/78 09/02/80

= 6-123 22/10/79 39 18/09/79 02/12/79

3 G-125  17/10/66 140 25/04/78 08/02/75

- 6~130 18/10/66 19 03/08/79 03/08/79

= 6~-131 18/08/78 350 27/03/78 16/08/80

G-140 264/02/67 17 12/08/78 12/08/78

i‘ 6-1562 14703767 77 07/01/78 02/10/79

{;f ; 6-187 10/08/67 435 17/04/75 26/10/76

3 G-157¢ 25/01/78 172 11/01/78 30/10/80

- 6-178 30/04/68 17 12/08/78 12/08/78

3 G-176 19/04/68 27 09/02/78 17/02/78

€ G-191 27701769 16 07/01/78 2B/04/78

?g G-220 11/710/78 266 13/08/78 09/02/80
G-253 09/10/78 114 27/03/78 18/11/79

- c-268 15/08/78 237 27/03/78 09/02/80
G-269 29/06/71 147 09/02/78 02/10/79

1 D17 » 182 19/20/77 23/06/80

& D43 » 12¢ 12/08/80 23/06/89

% All dates are given in day, month, year order.

N 8 = Calibration Table 1 changed due to addition of electronic readeut

y; on 18 Octeber 1977.

- b — Calibration Table 1 changed due to replacement of long lever on

} 27 Octeber 1977.

E‘ ¢ = Calibration Table 1 changed due to addition of electronic readout

{ on 30 August 1977.

L % —~ No Calibration Table 1 is provided with 'D’ gravity meters since

i the scale factor is assumed to be a constant [LaCoste & Romberg,

- 19798].
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Figure 12 =~ Geographical distribution of gravity stations and gravity
ties for the United States gravity base station network.
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“‘H sometimes a station identification number. date and time of each
observation to the minute, observed dial reading in dial units, height
of gravity meter above or below the station, station coordinates and
#’5 any remarks concerning unusual operating conditions or instrument

behavier. The time was given either in Universal Coordinated Time or

in local standard time with the correction needed to obtain Universal
Coordinated Time. The coordinates of the station were given as
latitude, longitude and elevation with the latitude and longitude
generally given to the nearest 0.1 minutes and the elaevation given te
0.01 meters or equivalent. See Figure 13 and Figure 14 for sample of

observation sheets.

3.2 Qpasrvational Preocedurs

The observational preocedure recommended is outlined in Land Gravity
Surveys, DMANTC/GS$$~TM-9, Preliminary Edition, October 1979 on page &4~-1
ugich basically states that

1) A valid set of observations consists of those made by one

observer. This is necessary to eliminate parallax and other

, observer peculiarities. The gravity meter must have been at
operating tempersture for at least 6 hours prior to beginning

observations and during the observations the eoperating

f temperature must be maintained.

2) The gravity meter may be placed directly on any smooth, hard,
{ level surface for observing. If any of these conditions are not
-

met, then the gravity meter should be placed on the levelling

Pmp——
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Pigure 13 — Example number 1 of a gravity meter field observation

sheet.
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Figure 16 — Example number 2 of a gravity meter field observation

sheet.
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disk which must be firmly seated to eliminate any movement while
the observation is being made.

The gravity meter must be levelled and then rough nulled. Rough
nulling is accomplished by turning the arrestment knob
counter—clocknise which unclamps the balance beam and then
rotating the dial until the beam is off its stops but not
necessarily to the reading line. The rough nulling condition
should exist for approximately 5 minutes before an observation is
made. During this time, the observer will enter atation
description information. The observer must keep the sun from
shining on the gravimeter because the heat might cause distortion
in the level vial assembly. Hhen finished with the observation,
the gravity meter's balance beam must be clamped by turning the
arrestment knob clockwise and the gravity meter returned to its
carrying case with the carrying case lid closed to prevent the
gravity meter from being tipped over by the wind.

The gravity meter is nulled by approa;hing the reading (nulling)
line from the down—scale (left) side to the up-scale (right)
side. The null position is the coincidence of the left edge of
the cross—=hair with the reading line. If the observer overshoots
the reading line, the dial must be offset 130 degrees down-scale
and the reading line approached again. This must be done to
eliminate any backlash in the dial gear system.

A valid observation at a station consists of two consecutive

nulling, ne more than & minutes apart, that agree to 0.01 counter
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units.

0f the some 4800 gravity meter ocbservations received., how many of
these observations were ocbtained follewing the procedure outlined above
is unknown. But what s known is that some of the observers did not
follow that procedure. Some of the data received consisted of a single
null reading per observation. This, in itself, is not necessarily bad.
But, the reason for the two consecutive nullings is to provide a method
of detection of blunders in nulling, reading, and/or recording.
Without the second nulling, the detection of these types of blunders
becomes impossible. In addition, no information is available
concerning the repeatability of observations made with the instrument.

Another practice, known to occur but not how often, is that of not
actually performing the second nulling [Beruff, 1981, private
communication]. 1Instead, a type of quasi-nulling is performed. After
the first nulling has been performed, the second nulling consisting of
the dial being backed off at least the required 137 degrees and then
the dial being set back at the first nulling position. The cress—hair
is. checked and if acceptable, the secend nulling recorded is made
identical to the firast reading. WKhat information this type of
procedure provides, 1f any, 1s not clear. But this type of practice is
not recommended and should not take place.

Another proctico which is not uncommon is the inconsistent recording
of the height of instrument [Wessells, 1980, private communication].
This eccurs when for some visits to a station, the levelling disk {s

used, while for other visits to the same station, the levelling disk is
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bot used and no height of instrument is recorded. The levelling disk
can elevate the gravity meter as much as 5 cm which, if the gradient of
gravity is assumed to be that of normal gravity, would result is a
systematic gravity change of about 15 jlgal. For this reason, the
levelling disk should always be used when making gravity meter
observations or the height of instrument of the gravity meter should be

properly recorded.

3.3 Morking with Gravity Meter Pata

All gravity meter data used was received as copies of the original
field observation sheets. The vital information necessary to perform
the gravity base station netuork adjustment was extracted and encoded

for use in the computer.

The information encoded was the station information, obsgrvation
information, and ingtryment informptjon. The station information

included the station's identification code, the station's name, and its
locati;n given by its latitude and leongitude to 0.1 minutes and its
elevation in meters. The observation information included the recorded
time of the each nulling to the minute and 1ts corresponding observed
counter reading. The time recorded was either in Universal Coordinated
Time (UTC)> or in local standard time with the correction needed to
obtain UTC. The instrument information consisted of tue identification
nunber of the gravity meter used in making the observaetions aleng with
an arbitrary data set number which was assigned to each set of

obsaervation sheets as they were recetved.
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The encoded data were then visually checked for agreement with the
iginal data and any errors corrected. Each observation, which
verally consisted of two separate nullings, is the average of their
l1 readings. 1ldeally, each nulling is made independently. The
rpose of the two independent nullings is ts check for blunders in the
lling process and in the recording of the reading. The time of each
servation is the average of the time for the nullings. The resulting
lues were used as the observation and the time of the observation in
? adjustment program. In the process, the time which was originally
ven in year, month, day, hour and minute format was converted into a
re@ convenient form, its Julian Date.
The way the time of the nullings is actually recorded should be made
iformly. Either all times are given in local standard time with the
rrection needed to obtain UTC, or they are given in UTC. The problem
th recording the time of the nulling in local standard time is that
? UTC corraection varies uith the location of the station and the time
the year that the nulling is made in the Unitaed States. It is
commanded that each gravity meter have a small electronic 24 hour
yital display clock which also displays the current date a.fixed te
which would be set to UTC. Then the time of the observation could
)ily be recorded in UTC without worrying about time zone or seasonal
nges in the local standard time.
Sut by far the most confusing, yet very impeortant, information is
» station information itself. Generally, complete station

‘ormation is not provided on the field observation s-eets. Instead,
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Just enough station information is provided to identify the statien so
its gravity station description or site description can be located. On
the gravity station description form is the detailed information about
the exact location of the gravity station which gives its latitude,
longitude and elevation with a word description of its location plus a
diagram/photograph of the station’s location. See Figure 15 and
Figure 16 for examples of gravity station description forms.

The confusion develops when the information on the field abservation
sheet is not sufficient to locate its gravity station description, if
it exists, or when the information of the field observation sheets does
not completely agree with the gravity station description information.
The latter problem occurs most often when the latitude, longitude and
elevation information is not given on the field observation sheet. The
question is not which latitude, longitude and elevation information
should be used (that is clear; the gravity station description
information should be used), but rather where the information on the
field observation sheet came from and whether the station is really the
station it is purported to be. To muddie the ‘situation even further,
gravity station description ferm; for the same station have been
received which are identical in deacription and date except for a
change in a coordinate of the station and/or station designation. See
Figure 15 and Figure 16 for examples of this situation.

To add even more confusion, some stations do not have a gravity
station description form. The most common station of this type is

commonly referred to as » grifs stption [Spita, 1981, private
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Figure 15 = Gravity station description form for station "Great Falls
0" -~ sample no. 1.
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Figure 16 — Gravity station description form for station "Great Falls
O" - sample no. 2.
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communication]). A drift station is generally established when the
observer is travelling between assigned gravity station and observer
has to make an overnight stop. The observer in this situation wWill
establish the drift station at this overnight stop, making an
observation that night and again the following morning, before starting
off for the assigned gravity station. The approximate coordinates of
‘f‘ this drift station can be obtained from a topographic map of the region
t but generally no gravity station description for the station is ever

produced since the chances are the station will never be reocccupied.

It is recommended that for every station where a gravity meter
observation is made, there should aluways exist a gravity station
description so the station could be reoccupied.

Another problem is that of the station designation which can be very
misleading. A station designation of just a name i3 not generally
enough. For example, there are tuwo stations in the United States Base

Station Network by the name of La3s Yggas B. One station is in Nevada

and the other is in New Mexico. Generally, in addition to & name for a

station, an identificiation code such as an International Gravity

i. Bureau (IGB) number is associated with the station. In the case of the
{ station, Las Vegas B, in Nevada, the identification code assigned was

E 120638 because this station was in the IGSN 71. However, the Las Vegas
L. B station in New Mexico had no identification code on its gravity

! station description sheet. But on some of the field observation

| sheets, the station appears with an identification code of 119588. The

- matching of gravity station description information with the
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information supplied on the field observation sheets can become very
confusing. This leads to the real possibility that the same station
could be identified in the adjustment as two or more different
stations. This possibility would result in a weaker network adjustment
and some confusion since there would be two adjusted gravity values for

the same station.

3.3.1 $tation Identification

In order to uniquely identify stations for the IGSN 71, the IGSB,
!ntornatiénll Gravity Bureau, number or code was established [Morelli,
et al, 1974]. The main feature of this coding system was that it
conveyed information about the geographical coordinates of the station
it was identifying. The 1IGB code consists of five digits and a letter.
The first three digits of the code are determined from the geographical
coordinates of a station using the following relationships given in
IGSN 71 [Morelli, et al., 1974]. See Figure 17 for how the three digit
code is distributed over the earth.

The other two digits of the IGB code are the units of the latitude
and longitude degrees respectively. In the formation of these digits,
ne rounding—off is done.

In order to identify uniquely stations that have the same five digit
number, 8 unique letter is attached to the end of the five digit code.
This permits up to 26 stations, one for sach letter of the alphabet, to

be assigned & unigque code for every 1xl degree block on the earth.
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In a world-wide gravity base station network like IGSN 71, 26
stations per 1xl degree block were sufficient. But, when local base
station networks are being established or densified, the number of
stations in a 1xl degree block might exceed the 26 stations permitted
when using the IGB code system. 1In the United States, the U. S.
Interagency Gravity Standards Committee recommended a solution to this
problem. The solution was to add an additional letter to the end of
the IGB code which would permit 676 or more stations to be uniquely
identified in any 1lxl degree bleck. The exact number depended on
whether blanks and/eor numerals were considered letters [Uotila, 1981,
private communication].

From a data management point of view, this change might necessitate
8 modification in the data base structure for gravity meter
observations if the IGB code were being used to identify the stations.
This is because the proposed "modified™ I0B code would require seven
characters as opposed to six characters presently being used.

*In order to avoid increasing of the number of characters needed to
identify a station and its location, a possible solution would be to
have kept a six character code with the first two characters
representing the 10x10 degree blocks instead of the first three
characters as is done in the IGS number. This could easily be
accomplished since there are 26 letters, a=z, and 10 numerals, 0-9, for
a total of 36 characters that can be used. HNWith thirty—-six 10 degree
intervals in longitude and only eighteen 10 degree intervals in

latitude, each 10 degree interval in latitude or longitude can be
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represented by one of the 36 characters available. This would permit
the geographicel 1lxl degree informstion to be represented in four
characters instead of five required by the present IGB code. This
would leave a set of two characters for station identification within
each 1xl degree block. This coding method would not change the length
of the code and relate the same information.

Houever, if this coding system uere used, an existing station would
have a new identification code along with its IGB code. This could
lead to some additional confusion. But, if the fifth character of the
new code were always an alphabetic character, then the tuo codes would
be unique and easily distinguishable because the fifth character of the
I1G8 code is always numeric.

The real concern is not which coeding system is adopted, but whether
the system will be used by all organizations that collect and
distribute gravity base station information. If a uniform ceding
system is not used, the confusion that can occur with station

jdentification will persist.

3.3.2 Qravity Mester Loopa and Icipa

A loop is a set of gravity meter observations that starts at a
station and generally ends on the same station after a number of other
observations have been made at other stations. A loop can require a
few hours to several days. to complete. The recommended types of loops
88 given in Land Gravity Surveys [DMAHTC/GSS, 1979] are referred to as

ladder, modified ladder. and line sequence. A ladder and modified
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ladder segquence loops start and end at the same station. In the ladder
sequence, every station is observed as if it were s rung on a ladder
and tho<ohsorvor climbs up and down the ladder stopping at every rung
to make an observation. In the modified ladder sequence, rungs are
skipped on the way up or down the ladder. The modified ladder sequence
loop is used when difficult field conditions are encountered.

Difficult field conditions, for example, occur when the station to be
occupied is in a building which is inaccessible to the observer on the
day and/or time the observer tries to occupy the station. The line
sequence loop does not snd at the starting station but at some other
stations. See Figure 18 for examples of the types of loops.

A loop in which the first and last station observed is the same is
often referred to as a glosed loop. A closed leop can be used to
determine if » linear drift exists within an instrument [DMAHTC/GSS,
1979]. It is based on the premise that any difference between repeated
observations at the same station is a result of a linear instrumental
drift. This, of course, is not the only reason why a difference
between repeated observations at the same station might exist. One
possible reason s that one or more tares could have eoccurred between
the times of the repeated cbservations which could result in a
difference in the observations. Another possible reason is that the
difference is due to observational error and not a linear drift.

Determining the presence of a linear drift in an instrument does not
require observations to be made following » closed loop structure such

as the ladder or the modified ladder sagquence. The line sequence loop
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Will work just as well. What {s necessary is that the relationship for
the drift of an instrument should be included in the mathematical model
used to describe the instrument's behavior. The mathematical model for
the instrument's behavior depends on the two observations used in
forming the equation and not on what type of loop the observations were
made.

A trip will be defined as a set of consecutive observations for
which the gravity meter's behavior 1s.assu-ed to remain the same. A
trip could involve a number of loops or just part of a loop depending
on how the instrument is used and what has happened to it. The
question arises as to when a trip begins and when it ends. The ansuer
involves the determination of when changes in the behavior of the
gravity meter can be expected. There are two good examples of when the
behavior of the gravity meter might change. First and the most common
is when a tare is introducted into the gravity meter. A tere reflects
a8 "discontinuity in the behavior of a gravity meter and cannot be
modelled into the observational difference betuween two consecutive
observations because its magnitude and direction are unknown. A number
of conditions can result in tares. For example, tares can occur when
the gravity meter is taken off-—heat and put back on—-heat, when the
gravity meter balinco beam is not clamped during transportation, when
the gravity meter experiences a rapid acceleration and/or deceleration
such as when the meter is accidentally jarred even if the balancr beam
is properly clamped and even when the measuring screw is being

lubricated [Perry, 1980, private communication].
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The other condition under which a new trip should be started is when
the activity of the gravity meter is unknown. 1f the activity of the
instrument is not known for a period of time, too many possible things
could have occurred to make the gravity meter's behavior inconsistent
during that period of time. For example, the meter could have been
taken off-—heat.

Te eliminate personal bi;s from being introduced when the
cbservations are being divided into trips, a set of rules was used to
define what consitutes a trip for a gravity meter. The rules followed
nere:

1) A new trip will begin with the first observation after a tare has

been detaected.

2) A new trip will bagin when the time between consecutive

observations exceeds Tl hours.

3) A new trip will begin when the time between consecutive

observations at the same station exceeds T2 hours.

The value of 24 hours was assigned to Tl and a value of 6 hours was
assigned to T2. The reason for choosing the value for Tl is that if a
gravity meter was being used to make observations in a loep, one would
not expect the time between observations to be longer than a day before
the loops was completed. The choice for T2 is based on the premise
that repeated observations at the same station would only occur when
the observations made were part of the same loop. This occurs,
genaerally, at overnight stops. Then {1t would be expected that the

repeated observations occurred the night before and the next morning,
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which generally meant a time interval of 6 hours or more. Therefore,
repeated observation at the same station separated by more than 6 hours
would indicate that the latter observation would be the first
observation of a new loop.

To verify this reasoning, an extensive study was performed te see
what the effect would be of dividing the observations into trips based
on various length of time. The results of this study indicated that
when the value of Tl was increased, the apparent accuracy of the
observed counter readings decreased. This was due to tares being
included which were present in the increased time interval previously
ignored. Conversely, as the value of Tl decreased, the accuracy of the
observed counter readings in some cases increased to unrealistic
accuracies of less than 10 jgal when T] was set to & hours. This
occurred because generally only small gravity differences could be
observed in that time interval.

The study also looked at the posaibility of the gravity meter having
a different behavior during the overnight stops as opposed to the
normal observation sequence. However, due to the limited number of
overnight differences avatlable for each gravity meter, there was not

sufficient evidences that any change in the gravity meter's behavior

eccurred.

3.4 Qbaervational Errora

As mentioned previously, errors such as tares can easily be

introducted into gravity meter observations. There is little that the
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arver can do to guard against these type of errors, except handle
' gravity meter with care when it is being transported. However,
i@ errors can be introduced into the observations no matter how much
‘e 18 taken in its transportation. These errors are due to improper
wation and adjustment of the gravity meter itself.
The gravity meter should not be without power for any length of time
:ause without the pouoi the operating tamperature of the gravity
‘@ cannet be maintained. To insure a stable operating environment,
} gravity meter must be kept on—heat. Therefore, the gravity meter
wld always be connected to either a battery or the
rger—aliminator except for the short time required to change between
) two power supplies.
As mentioned previously, transporting the gravity meter should only
ur when the beam is clamped. Failure to follow this simple rule
1, almost surely, introduca tares into the gravity meter.
The proper adjustment of the gravity maeter is also very important to
ure the stable behavior of the meter. The two gravity meter levels,
leng lavel., (perallel to the counter), and the gross level.
rpendicular to the counter) must be adjusted according to the
rating manual provided wWwith each gravity meter [LaCoste & Romberg,
0)]. The quality e the observations made with a gravity meter
mds to a large part on these two levels being in proper adjustment.
deviation from the correct position of the levels will change the

vity meter’s sensitivity and reading line.
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The sensivitiy should be checked periodically to assure that the
recommended sensitivity is kept at 8 to 12 eyepiece divisions for every
dial revolution [LaCoste & Romberg, 1980]. 1If the sensitivity is not
kept within this range, the reading line for the instrument will
change. For a decrease in the sensitivity, the reading line will shift
up the scale. Conversely, for an increase in the sensitivity, the
reading line will shift down the scale [DMAHTC/GSS, 1979].

Even if the instrument is in perfect adjustment, observational
errors can be introduced by the observer through the nulling of the

instrument and the reading and recording of the observation.

3.5 Honkasalo torrection Term

The so called Honkasalo cerrection term is a latitude dependent
correction which was applied to all absolute gravity sites used in the
IGSN 71 adjustment [Morelli, et al., 1974]. The result was that all
adjusted gravity station values published for the IGSN 71 included the
Honkasalo correction term. The correction is based on the premise that
the earth tide correction applied to measured gravity given by equation
(1) in Honkasalo [1964) is only zero whan summed over the whole earth's
surface and not zero when summed over a particular latitude. This
systematic effect according to Honkasalo [1964] should be removed if
the earth tide correction summed over a particular latitude is to be
zero. The amount to be removed is given by equation (5) in Honkasalo

[1964]).
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At the XVII General Assembly of the International Union of Geodesy
an Geophysics at Canberra, 2-14 December, 1979, Resolution No. 15 was
passed by the International Association of Geodesy which resolved that
the Honkasalo corraection should not be applied to observed gravity
[Uotila, 1980]. Therefore, all published IGSN 71 station values should
have the Honkasalo correction removed according to the method given by
Uotila [1980).

In this regard, care must be taken to assure that any station value
used as control in an adjustment does not include the Honkasalo term.
The Italian absoclute station determinations as given in Marson and
Alssia [1978] include the Honkasalo correction term. In order to have
a consistent set of absolute stations, the Honkasalo term must be
removed from those absolute station values since the later Italian
determinations [Marsc~ and Alasia, 1980] and all U. S. determinations

made by Hammond do not include the Honkasalo terr [Hammond, letter to

Uotila, 1981].

3.6 phy The Gravity Valug Changea

Environmental and geophysical changes can result in the actual
changing of the value of gravity at a site. These changes can be
classified as efther long tarm which tend to be of a permanent nature

and short term which tand to be of a temporary nature.
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3.6.1 Long JTerm Effects

Long term variations in the value of gravity at a station result
from geophysical changes within the earth. These changes are caused by
a redistribution of the earth's masses resulting in a change in the
value of gravity at a station. ﬁomo examples of effaects that can cause
these long term variations are: displacement of the earth's core, mass
redistribution in the crust and/or mantle, changes in the position of
the station, changes in the earth's rotation and/or figure and changes
in the gravitational constant [Boedecker, 1981]. These long term
variations, generally, are caused by geophysical events having
anrodictab&e effect on the value of gravity at a station. For this
reason, the modelling of these effects in a gravity station network is
presently not feasible. The magnitude €for these types of effects may

be on the order of tens of lLgal/year [Boulanger, 1979].

3.6.2 ghort Yerm Effects

Short term variations in the value of gravity at a station results
from such things as earth tide, variation in the level of the
groundwater, and changes in the distribution of the atmospheric masses
[Boedecker, 1981] are more predictable than the long term variations
previously mentioned, provided sufficient data is available. The earth
tide mhich is caused by the gravitational pull of the moon and sun on
the earth can be theoretically be modelled to an accuracy of better
than 0.01 ugal [Meikkinen, 1978] provided adequate information is

available about the location of the station and the epoch of the
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observation. The change in the level of groundwater below a station
results in a predictable change in the value of gravity. This is the
same as changing the mass distribution below the atation. To determine
the effect that changes in the groundwater levels has on the value of
gravity at a station requires detailed information about the extent and
level of the groundwater at the epoch of the gravity ebservation. This
information is generally not available. This makes modelling the
effect of the changes in the groundwater level not feasible. The
magnitude of the change in gravity at a station caused by a change in
the ground water laevel i{s generally in the range of 10-20 ligal but has
been reported to be more than 100 Ligal [Boulanger, 1979].

The short term variations in the value of gravity caused by changes
in the atmospheric masses above a station {8 seasonal in natur. with
estimates of this variation being as large as 20~30 ugal [Boulanger,
1979). Even though this variation might be able to be modelled, its
effect on the gravity difference betwesn two consecutively observed

stations could probably not be detected since the time between gravity

- observations is, generally, less than six hours while the change in the

mass distribution of the u«.mosphere is assumed to be more gradual,
taking on the order of days to weeks before changes in the value of
gravity can be observed. This effect should be considered when
absolute gravity measurements are being made.

Besides short term variations i{n the value of gravity at a station,
there are short term effects that influence the observations made with

8 gravity meter. These are caused by variations in the voltage,
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temperature, atmospheric air prossuro.'and magnetic field. The effect
these variations have on the gravity meter observations depends on the
individual instrument being used. Under controlled conditions. the
effect of each appear to be predictable {Kiviniemi, 1974). However,
the magnitude and direction of the effect requires additional
information, such as the voltage of the power supply., atmospheric
pressure, temperature, and alignment of the gravity meter relative to

magnetic north, which is not generally recorded when the gravity meter

observations are made.
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CHAPTER FOUR
GRAVITY BASE STATION NETWORKS

4.1 Introdyction

A Gravity Base Station Network consists of a set of recoverable
gravity stations distributed over a geographical region for which the
value of gravity has been determined. There are two methods available
for determining the value of gravity of a station in a network. One
method of determining a station’s gravity value is b; direct
measurement of gravity. This is done by instruments referred to as
absolute gravity measuring apparatuses or absolute gravity meters.
There are two types of absolute gravity meters, permanent and
transportable (portable) which either employ the free fall or the
symmetrical free rise and fall technique [Sakuma, 1976]. With the
permanent absolute gravity meters, claims for their accuracies or
precision on the order of a few g2l are made; while with the portable
absolute gravity meters, accuracies or precision in the neighborhood of
10 ugal are obtainable [Marson and Alasia, 1978; Marson and Alasia, ]
1980; Wilcox, 1980].

The other method available is by making relative gravity meter ties
from statfions of known gravity values to other stations. The most

common gravity meter used in the geodetic community for this purpose
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are the LaCoste & Romberg 'G' and 'D' gravity meters. See Section 1.2
for a description of the basic difference between the LaCoste & Romberg
'G' and ‘D' gravity meters.

The portable gravity meters, such as LaCoste & Romberg 'G' gravity
meters, provide only relative gravity difference information about a
netuwork and nothing concerning the actual gravity value of a station.
The absolute gravity noters-en the other hand provide information about
the actual value of a station. Once a statien's gravity value is
known, portable gravity meters can be used to make ties between
stations with known gravity values and stations with unknewn gravity
values. Howaver, the gravity difference can only be deduced if the
relationship between the counter unit difference and their actual
gravity difference is knoun. The relationship is purported to be given
by the Calibration Table 1 supplied with each gravity meter. As it has
been mentioned, the scale for this calibration table comes from an
assumed gravity difference between tio stations in New Mexico,
Cloudcroft and La Luz. If the assumed gravity difference betuween these
two stations is in error, then the scale factor determined from their
assumed di fference would cause the Calibration Table 1 to be off by a
scale factor.

To determine the scale factor that is to be applied to Calibration
Table 1 requires the knowledge of at least one gravity difference.

This can only come from the difference between two stations of known
gravity value. A station of known gravity value is often referred to

as an absolute station. Having more than two absolute stations does
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not necessarily provide more information concerning the linear scale
factor that is being attempted to be determined. The distribution of
the known gravity stations over the range of the network plays a very
important role in how well the scale factor can be determined [Uotila,
1978]. In order to obtain the best determination of the linear scale
factor reguires that interpolation instead of extrapolation be done.
In addition, the shorter the interpolation interval, the better. 1t is
clear that for a network having a gravity difference between the
gravity station with the largest gravity value and the gravity station
with the smallest gravity value of X mgal and consisting of n known
gravity stations, the scale factors are best determined when the
gravity difference between known gravity stations is approximately

X/(n=1) mgal with n>2.

4.2 gGontreo]l of Netuerk

1f the control for a network is not good, then the results of the
network adjustment can not be expected to be good. The absolute
gravity stations in a network provide the control for the network. In
the U. $. Gravity Base Station Network, two different absolute gravity
measuring devices were used. One was from Italy [Marson and Alasia,
1978; Marson and Alasia, 1980] and the other was from the United States
[Hammond and 11i¢f, 1978]. The accuracy of the determination made with
each of the instruments was purported to be in the neighborhood of
10 ugal. But the difference between the values of gravity determined

at the same station by these instruments has on occasion been as large
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as 100 ugal or more [Marson and Alasia, 1978 and 1980; Hammond, 1981,
letter to Uotila]. The reason for such large differences between the
determinations made by these instruments is unknown. Even more
puzzling is why repeated determinations made with the same instrument
do net agree very well. By comparing the values in Table &4 and
Table S, examples of differences between gravity values at the same
site can be seen. situations.

A variety of reasons can be hypothesized why the two absolute
gravity measuring devices give different values of gravity at the same
station. Some reasons are: there is a systematic difference between
the two instruments; there is » scale problem with the timing and/or
distance required for the determination; the gravity value at the
station actually changed; and external forces influenced the
determination.

0f these possible reasons, only the last one has been proven to be a
real cause. When the Italian apparatus made measurements at the
Holloman, AFB in New Mexico in May and June of 1980, difference between
the two determinations of the value of gravity at the site of 80 ugal
was noticed. Further investigation as to the reason for this
di fference revealed that the gravity value obtained depended on whaether
a gyro testing system in a near by building was operating. HWhen the
gyro testing system was not in operation, the gravity values determined
by the Italian and the United States absolute gravity apparatus agreed
very well. However, when the gyro testing system was operating, the

values determined disagreed by spproximately 80 ugal. It seems that
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Table & ~ Listing of values of absolute sites determined by Marson and

Alasia.
1GB/GSS Station
Code Name
18221A Boston,MA
11994H Denver,CO
15560A Bismarck,ND
1192¢6A Holloman,NM
12172A San Francisco,CA
08150C Miami,FL
155050 Boulder,CO
11926A Holloman,NM
119804 McDonald Obs.,TX
1585voA Sheridan, WY
186E0S5 Great Falls,MO
231A01 Anchorage, AK

Gravity
in Ugal

980378659
979598267
980612882x%
979139513x
979972060x%
979004319%
979608498
979139584
978820097
980209007
980497412
9281928998

IGB — International Gravity Bureau

GSS — Geodetic Survey Squadron

Standard
Error

in Ugal

11
10
10
18
10
10
11
12
11
11
10
10

Date
Determined

10/ &=11/77
10/16~-19/77
10/25-27/77
11/ 3=7 777
11715=17/77
1172126777
5/26=-27/80
6/ 2-3 /80
6/ 6-7 /80
6/12-14/80
6/17-18/80
6/27-28/80

* denotes Honkasalo correction removed from published value.

Information obtained from [Marson and Alasia, 1978 and 1980].

)



e

w

79

Table 5 —~ Listing of values of absolute sites determined by Hammond.

Standard

IGB/GSS Station Sravity Error Date

Code Name in Mgal in Ugal Determined
119944 Denver,CO 979598277 10 3/27-29/79
119503 McDonald Obs.,TX 978823635 8 7/ 3=4 /79
11926A Holloman, NM 979139600 10 7/ 6=7 /79
119C01 Trinidad,CO 979330370 10 7/10=~11/79
119cCo03 Mt. Evans,CO 979256089 8 7/12-13/79
185vo] Casper,NY 979947244 25 7/18=17/79
158vo3 Sheridan, WY 980208912 10 7/18=19/79
186E08 Great Falls MY 930497311 10 7/21-22/79
11926A Holloman,NM 979139600 8 5/14,31/80
15221A Boston,MA 980378681 10 7/ 7 /80
186E0S Great Falls,MT 980497367 10 10/ 9-11/80
185ve3 Sheridan, WY 980208964 10 10/13-16/80
15508D Boulder,CO 979608601 10 10/18-23/80
119C01 Trinidad,CO 979330393 10 10/25-26/80
119804 McDonald Obs.,TX 978820087 10 10/28-29/80
15221A Boston,MA 980378768 10 2/ = /81

IGR — International Gravity Bureau
GSS — Geodetic Survey Squadron

Information obtained from [Hammond, 1981, letter to Uotilal.
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the electronics of the Italian apparatus were affected by the gyro
testing system while the United States apparatus®’ electronics were not
affected [Wilcex, 1980].

Any erreors that exist in the value of gravity at the absolute
stations will be reflectad directly into any scale factors for the
gravity meters determined when the network adjustment is performed. As
a result, the value of gravity determined for the other stations in the
adjustment will be affected.

The gquality of a gravity network not only depends on the accuracy of
the absolute stations' gravity values but also on the distribution of
the absolute stations in the network and the gravity meter ties made
betueen gravity statiens. The question that comes up is what is the

best network configuration for a set of gravity stations.

4.2.1 griteris for the Rest Netuwerk

In order to say that one network is better than another, a criteria

must be established which will enable this decision to be made.

. Assuming there are two networks, l‘ and ‘Z' each containing the same

stations but with different gravity meter ties made between the
stations and possibly different abselute gravity station, a decision as
to which one is preferred, based on the variance-covariance matrices
for their adjusted station values, can be made using ene of the
properties described by Fedorov [1972].

Uotila [1978] points out that the most appropriate criteria for

comparisen of gravity base station networks invelves the
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variance—covariance matrix for the adjusted station values which has
the minimum trace. The trace of a matrix is the sum of its diagonal
elements. Therefore, one can say that network, E], is preferred to
network, EZ' if the trace ZE] is less than the trace ZEZ.

Using this criteria, Uotila [1978] describes a method for
determining at which station in a network an absolute gravity
measurement should be made in order to improve the network the most.

This method can be used with » slight modification for determining

which gravity meter tie would improve the network the -west.

4.2.2 Se¢lection of the Gravity Meter Tig to Improvg a Network

Since a gravity meter tie provides information abo#t the gravity
di fference between existing stations in the network, the best gravity
meter tie to make would be the one which results in the biggest
improvement in the variances for the station gravity values. The
selection can be made by using a slight modification of the method
Uotila [1978] described for selection of absolute gravity sites.

Assuming that the minimum variance solution for a set of equations

for a gravity base station network is given by

1

X = u; U 4.1)
and
(4.2)
Xa - Xo + X
where




xo - fnitial estimated value of parameters,

X -~ correction to Xo.

xa - adjusted parameters values,

U -~ constant vector of the normal equations,

N;‘ - variance—=covariance matrix of the adjusted parameters,
en, if a set of observations, Lg, with their variance—covariance
trdx, ZL: = P;'. and & mathematical model

L2 - F(X.) (6.3)

b a

‘@ added to the original solution, the combined soclution for the

rameters is given by

2
X3 = X, *+ X, (4.4)
ere
X, = =(N, + ASP.A ) T(u + ASP L) 4.5)
2 1 2272 2272 :
d
5F
2
AZ -a-i-a- 4.6)
Xa = Xo
2 2
Ly =L =L 6.7
2
L, - rz(xo) (4.8
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As shown by Uotila [1978b), the varisnce—covariance matrix of the
adjusted parameters for the combined seclution is given by
Lo an ! o ntatia nolat o p=ly=1, oot
x: Ny = NUAS (AN A, + Py ) TAN, | (6.9)
The change in the trace of the variance-covarisnce matrix for the
adjusted parameters resulting from the including of the new gravity
difference information will always be negative and its magnitude is
given by ,
-1,t =1,t o =11~ -1
N, A (AN, A, ¥ P, ) AN, (6.10)

What is desired is the gravity difference which will make (4.10) the
largest. Assuming that a single uncorrelated gravity di fference, sij'
can be observed with a variance of g° between two station whose

iJ

gravity values are given by gi and ’j where

915 = 91 = 9; (4.11)

then ‘2 matrix will be a row matrix of zero elements except for a +1 in

the i=th column and a =1 in the j=th column. The value of

Azn;‘A; + p;‘ (4.12)
can be shown to be the value of the variance for the i=th and j-th
station minus twice thoi; covariance plus the varjance of the new
observed gravity differencs. The inverse of (4.12) is the reciprocal

of that sum. The matrix preduct of Azn‘ will result in a matrix

formed from two columns of N;'. one being the i=th celumn and the other

=3
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N being the negative ef the j=th column. If the tuwo columns of the

!; matrix, Azu;‘. are thought of as the vectors, Y; and Yj' then the value

given by (4.10) can be sheun to be the value of

(e
<
-..
._<

(6.13)

v 2 -
% of+aj-2;+q
3
e where
. - represents the dot product of two vectors,
g, - covariance betwsen station 9, and ’j'
a; = variance of the new observed gravity difference.

Therefore, the gravity difference between stations g; and ’j which
saximizes the value of (4.13) would indicate where a gravity tie should
be made to fmprove the netuwork the most. This method s similar to the
one described by Uotila [1978b] for selection of absolute gravity
sites.

In 3 netuork of n stations, there is a possibility of nin=1)/2
di fferent gravity differences uith at lesst n=1 of these differences

slready existing in the network. By using this method, the effect on

the trace of the statien's variance=covariance matrix of adding a new
and/er existing gravity meter ties with » certain accurscy can be seen.
For every .tlfi.ﬂAlldld to a netuork of n stations, n more possible
gravity differences are introduced. Many times these stations which
are asdded to a netwerk are very clese to an existing station. The
added stations will generally have gravity values very close to that of

the neighberiag statien that had been previously established. As 2
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result, the small gravity differences, generally less than 10 mgal,
provide little additional information that can be used in improving the

determination of the gravity meter scale factor. These types of

stations are referred to as geeantric stationa. If there is a large

number of eccentric stattons {n an area, any improvement in the area
Nill result in a large improvement in the trace of the stations’
varisnhces, but in reality the actual improvement of the variances for
stations outside the local area could be small. In such a situation, a
local improvement results rather than the desired over 8ll netuork
improvement.

Therefore, when sttempting to select where new gravity meter ties
should be made, {f possible, eccentric stations should not be
c;nsid.rod. 1f possible, only ene station in & local area should be
used. The station with the most gravity ties to stations outside the

lecal area should be used, provided that all the eccentric stations in

an area are adequately tied to each other.
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Eg CHAPTER FIVE 4
5.1 Ivaes of Ghascvables

?’ A gravity mater resding involves the oliserver recording the value of

ég the counter and the pesition of the dial aftar the gravity meter has

Ef been nulled, remembering that 1 counter unit {s equivalent te 100 dial

:: units. ‘Th. observation is thenh generally converted to its yalus in

i: ailligal by intarpolating within the factory supplied Calibration

3 Tabla 1. The mahufacturer suggésts that a 1inear interpolation be made

2 within the Cslibration Table 1 te obtain the value in milligel for an

E: observed reading [LaCeste & Remberg, 1980]. This can be accomplished

é; by following the simple precedure outlined. First, the value in

B milligal fer the gountar rasding which is nearest te, but less than,

ft the observed resding is deterwined. Let the counter reiding value used

;; be Y and its cerresponding valud in milligal be X. The difference, 2,

- betueen the observed resding.snd the counter resding used, Y, is then "
L+ obtained. Nemt, multiply the difference, 2, by the fagter for interval )
8 for the ceunter reading, Y, and add the result to the value of

milligal, X. The result is the valué ef milligal for the cbserved

reading.
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Using a linear interpolation procedure within the Calibration
Table 1 assumes that the relationship betuween the counter readings and
the values in milligal can be adequately represented by a pisce-wise
linesr function. Since the Calibration Table 1 information is produced

]
by reading the value of factor for interval off of a continuous curve

of factory calibration scale factor data, it is possible that »
plece—uise continuous relationship, such as a cubic spline [Spath,
1964)., should be used. Hhen a comparisen was done to see the
difference between the use of a linesr or cubic spline interpolation
procedure within the Caliﬁrntion Table 1, the maximum observed

di fference betueen the two methods was on the order of 2 to 3 Lgal.

This shows that the behavior of the Calibration Table 1 is relatively
smooth.

Since the Calib.ation Table 1 attempts to represent a continuous
type of continuous information, the cubic spline -ithod of

interpolation would be preferred to the linear method of interpolation

even though the difference betueen the tuo methods is small.

As mentioned previously, the values in milligal are derived from the

— e
i ‘D‘I' L
[ I .

L‘ factor for interval values based on the sssumption that the factor for
;} ) interval over a particular intervel, ususlly 100 counter units, is

;} constant. In reality, this is not exactly true. The facter for

»; interval values represent a continuous functien as opposed to a

E— piece~uise linesr functien. Therefore, the values in milligal should
Ef be determined from the integration of this continuous function or an
t% appreximation of it, such as a cubic spline. The difference betueen
-
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the Calibration Table } values in milligel and these computed from a

K culic spline reprasentation of the fpcter for interval can be as large

N
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e
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as 18~18 ugel ever & 300 mgal interval. The large differences can lead

I‘ '\‘l

to & systamatic errer being intreduced in large gravity differences,
over 100 mgal, which would nat be evident {n smaller differences. This
means that as the gravity difference incresses in size the variance of
the difforence about the mean of the gravity difference that is
acceptable sheuld alse be incressed. This makes the detection of tare
of & given size mere difficylt for gravity differences that are lorge
as appetad te these that sre ssall.

Once the value in milligel fer all readings has been determined, the
gravity'difforonoo between two stations can be determined by computing
the difference between their valuss in milligal. Heuaver, the
resulting difference will net be {ndependent of the time of the

. chservation and might have te be scaled by a factor te obtain the
propar units of gravity. The difference can be made time independent
hy remeving any knewn tine depandent gffect such as the sarth tide

effect. In erder te obtain a gravity difference in the proper units,

the sheolute scale facter gpplied to creats the Calibration Table 1
sust be cerrect and valid fer the range in which the gravity meter uas

being used. It muet be remembered that the abseolute scale factoer

‘I..A.'A" l“ .

L "".'.'T.",I

e applied te the relative scale facter during the factory calibration

EE precedure wps truly valid enly ever s range of approximately 242 mgals
;; for gravity values in the region of 979 gal. Assuming it to be valid
i% for any range ever which the gravity meter is being used, might net be
o
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correct.

It is clear that the only true observed quantity for a gravity meter
is the observed counter and dial reading. From the observed counter
\ readings, their values in milligel are derived. And finally, the

gravity difference betueen two values in milligal can be obtained.

5.1.1 Qbserved Seunter Reading

The quantity that is observed on a gravity meter is the position of
the c;untor and the dial which when combined yields the observed
counter rooétng. . The problem with using this quantity as the
observable in a mathematical medel is finding an snalytical
relationship that will tranform the counter readings into units of
gravity. An empirical relationship exists in the form of the
Calibration Table 1 which is supplied with sach LaCoste & Romberg 'G*
gravity meter. It is necessary to determine if there is an analytical
expression for the empiricial relationship expressed in the Calibration
Table 1 which can be used as a functional relationship in a least
squares adjustment model. If not, it is necessary teo determine f
there is some analytical function which npproai-atil that empirical
relationship. If the relatienship can be expressed adequately, then
;ho observed counter readings can be used directly as observables in a
least squares adjustment model.

Assuming that such an analytical relationship can be found and that
it is a simple function, then solving for periedic screw effects

becomes possible without getting inte the preblem of having to assign
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Heights to two different observables, counter readings, and their

values in milligal which represents the sase quentity.

8.1.2 Yalus in Millisal

If the observed ceunter reading cannot be used as observables in the
adjustment due to the lack of an sdequate qodol for the Calibration
Table 1, then the next best quantity that could be used would be the
values in milligal fer the ch;orvcd counter reasdings. A model which
uses as its ebservable, the vnluo‘in milligal, has been develeped by
Uotila [1976] and used with some success. The model which Uetile
. [1976]) proposed used an equation involving the difference between twe
gravity meter observetions which tmplies the fellowing expressien fer

each gravity meter ebservation

goix'+k(t-1’°)#s-6-0 5.1
i=0
where

D, = coefficient of the i=th order scale facter term,

x = value in milligal of the observed counter reading corrected
for all hknown systematie effects, such 8d4, @srth tides an
height eof instrument above the statien,

k = ceefficient of the drift term,

t - gpech of the observatien,

T_ = seme srbitrary ifnitial epooh asseciated with the set of

gravity meter observationms,

M N &
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L 3

$ = an unknown offset value that must be added to obtain the
correct absolute gravity value for the station,
6 = gravity value of the station,

n = largest order scale factor term to be included in the model.
..;DUI. the linear scale factor term in addition to scaling the
value in milligal would also scale all of the systematic effects, this
model is theorestically incorrect even when n = 1. However, this effect
would be minimal because the value of the linear scale factor term is
very close to 1. For n>1, the question of what the model represents
becomes very confusing. As noted by Uotila [1974], higher order scale
factor terms might not have any physical justificiation. But, even if
they were physically justified, a similar problem exists when n>1 as

when n 2 1. If x is expressed as £ + C where z is the value in
milligal of the observed counter reading obtained from the Calibration
Table 1 and C s all associated systematic effects, then when n = 2,
for example, terms {invelving ch and cz enter into the model.
1hoorit1ea11y. these terms are not appropriate; however, ghoir affect
would be small compared to the value of :2 o

A more appropriate expression for equation 5.1 might be

n
):n'z'+k(t-'r)+s+c-c-o
1=0 °

(5.2)

where the meaning of the symbols has been previously defined. HWHith the

expression, the preblem of scaling the systematic effects s removed.
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$.1.3 gravity Riffsrances

The most commonly used, and probably most incorrectly used
observable is the gravity difference. Many different models have been
proposed using the gravity difference as the observable [Whalen, 1974;
McConnell and Gantar, 1974; Torge and Fanngioolr. 1980]. A typical

model might be expressed as

IAOU + k(t:l - tj) +c - cj -6 + Gj ) (5.3)

where
1 - coefficient of the linear scale factor term,

Ag‘j -~ observed gravity meter difference in milligal between station

t and j§,
k = cooffici;ut of the drift ternm,
t = time of observation at station n,
8 = gravity value at statien n,

€ = 3ll systematis effects for the observation associated with

the observation at n.

Squation (5.3) can be rewritten fnto true observation form as

k(t, =t,) +C, -C, =G, +6
A"j - ‘ j 1 ' J ' -l (5.4)

The observation ferm exists when the observed quantity is strictly a

function of parameters
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The least squares solution of this system of equations requires the
variance=covariance matrix of the gravity differences computed from
observations to be known. GOenerally, this variance—covariance matrix
is assumed to be diagonal which neglects the correlation that exist
betueen successive gravity differences as stated by Uotila [1974]).

1f the correlation in the veriance-covariance matrix of the gravity
di fferences is not included, the effect on the value of the adjusted
parasmeter values will probably be very small. However, the
varisnce=covariance matrix for the adjusted parameters will be greatly
affected. As » result, the estimate of the variances for the adjusted
parameters will be too low. This results in an over optimistic

sstimates of the standard error of all parameters.

5.2 gCharacteristics of Calibration Yabls 1

Each "G™ gravity meter produced is » hand built preduct which
results in its eun characteristic beshavior. Even though t;is behavior
is different for every gravity meter, the Calibration Table 1 which
represents this behavior does exhibit sonovcon-on characteristics. The
functional relationship between the value in milligal and the counter
readings, although unknown, is nearly linear. If the linear trend is
removed from the Calibration Table 1, the higher order trends can be
seen more readily. Attempts have been made to represent the entire
Calibration Table 1 by using polynomial functions up to the fifth order

with some success [Votila, 1978b). Preoblems arise in the separation of

the coefficents of these higher order polynomials, since the
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sefficents tend to be highly correlated with each other. Correlations
b} large as 0.999% and larger are not uncommon. HWith these high
srrelations, the least squares polynomial +it tends to be very
msitive to the data used in making the fit. Since the actual
unctional behavieor is unknown, using these higher order polynomials to
present the relationship could very easily lead to fitting the data

nstead of the identification of any general behavior characteristics.

.2.1 Posaiple Medels

After the linear trend has been removed from the Calibration
able 1, it is apparent that the residuals of the value in milligal
xhibit a definite trend, a type of wave or periodic functien. To
termine the characteristics of the trend exhibited, a spectral
alysis of the values in milligal versus the counter readings for each
*‘avity meter's Calibration Table 1 was performed. The analysis
idicated that the only sinusoidal term present was a low froqﬁency
irm. The wave length of this term was in all cases larger than 4000
wnter units. The median value and mode of the wave longih for all
‘e gravity meter was around 8000 counter units. See Figure 19 for
iamples of this trend. One possible relation other than a higher
der polynomial that could be used to model this type of trend is a

nusoidal relation given by
B, sin( l?.) + 8, cos( -z-?-) (5.5)

are
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d - the counter reading,
T = the period of the sinuseid,

B 82 - the amplitude of the sinusoid.

Il
This relationship can be expressed as » single function Ly using a

basic trigonometric identity giving

A cos( -2—_1;'—’-4- w ) . (5.6)

where
A - amplitude of the sinuseid,
d -~ observed counter reading,
T = period of the sinusoid in counter units,
w = phase angle for the sinusoid.

) To see how well the Calibration Table 1's values in milligal can be
represented as a function of the counter readings, » least squares .
adjustment was performed using & model containing a polynomial and

sinusoid terms as given by

noo, K 2nd .
Igolid + JE'AJ cos( —1,;-4» W ) =y (5.7)

shere
y = value in milligal from Calibration Table 1,
d - counter reading corresponding to the value in milligal,
A = amplitude of the i=th sinusecid in milligal,
T = period of the i=th sinuseid in units of d,

w' = phase angle of the i=~th sinuseid in radians,
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n = the order of tha polynomial,

k = the number of sinusoids.

Various values of n and k were selected for a number of counter
readings ranges to see how well the Calibration Table 1's values in
milligal could be represented analytically as a function of the counter
readings. A sample of the results for various models tested is given
in Table 6 and Table 7. Table ¢ represents the situation in which a
gravity meter is used over a world wide range of 5.6 gal with
observations made within a range of the counter readings from 700 to
63’0 counter units. The uses of & linear model, n = 1 and k = 0,
results in root mean square (RMS) it of the 57 residuals for each
gravity meter ranging from approximately zﬁo to 1200 ugal. However,
when a sinusoid was included in the model along with the linear term,
ns1landkz=1, the RMS fit of the 57 residuals was reduced to a range
of approximately 13 to 85 Ligal. But for the data used in this study
which represents only a limited range of counter, the counter readings
from about 2000 to 4400 counter units were used. If only that part of
the Calibration Table 1 is used, then the situation gets better as is
shown in Table 7. The number of residuals used to produce the results
givoﬁ in Table 7 ua-'zs.

Table 7 compares ;our different models, three different polynomiasl
models and a sinuseoid or often referred teo as periodic model. As can
be seen in Table 7, feor every Calibration Table 1 selected, except for
gravity meter '0-187', the sinuseid model, n 2 1 and k = 1, resulted in

the best RMS fit of the data. In most cases, the difference between the
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Table ¢ — Summary of the results of modelling the Calibration Table )
counter readings from 700 to 6300 using & linear function and

a linear function plus a periedic ters.

Gravity
Meter

6-10

G=A&

G463
=31

6-~103
G=103
=111
G=118
6-123
G131
G=142
G=187
G-220
G268
G-269

Calibration

Date

25/10/60
25/06/63
23/03/64
87/08/64
67/09/68
14/11/79
28/03/66
16/08/78
24/10/78
18/08/73%
14/03/67
10/08/67
14/11/779
15/708/78
11710778

Linear

1192.23
633.31
785.22

1136.44
685.67
731.76
904.01
212.04

1016.92
320.29
288.27

1029.64

1011.06
202.37
364.88

Root Mean Square Fit in Lgal

Periodic

41.02
32.33

(7650)
(6381)

31.00¢10222)

16.63
16.64
13.23
13.43
80.70

(84380)
(6832)
(7015)
(7926)
(4068)

16.23¢10288)

846.42
62.47
45.16
15.36
12.61
28.81

The quantities in parentheses dencte the periocd of the

counter units

(43380)
(4283)
(8428)
(8035)
(8493)
(8924)

pertodic term in

Model used is given by equation (5.7) where LINEAR fmplies n=l and kz0;

PERIODIC implies n=l and kal.

L P P
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Table 7 = Summary of the results of modelling the Calibration Table 1
counter readings from 2000 to 4000 using various order
polynomials and a linear function plus a periedic term.

. Gravity Calibration Root Mean Square Fit in ugal
Meter Date Linear Second Third Periodic
6=10 25710760 352.81 27.61 23.98 7.646 (4631)
G=44 25/04/63 209.56 11.6% 11.59 3.69 (5106)
68 23/08/64 181.08 16.36 14.23 13.60(1069%6)
=81 07/08/64 293.63 16.19 9.85 9.83(26155)
G=-103 07/09/68 198.91 13.43 9.21 8.17 (8920
G=-103 16711779 214.81 13.43 3.90 0.99 (8647)
G-111 25703766 248.9%% 16.26 4.18 3.30(11264)
G6-118 16/05/78 864.28 6.26 5.39 1.61 (4786
G=-128 26/10/78 243.53 14.30 9.064 8.54(10349)
G-131 18/08/78 125.381 14.28 4.68 0.78 (6049)
0=-142 14/03/67 128.35. 21.3¢ 9.96 €.03 (4721
G=-187 10708767 229.13 14.36 6.73 7.32 (8248
0-220 14/11/779 266.25 9.99 5.08 2.65 (9014)
G-268 18708778 248.60 30.49 6.12 2.11 (788%1)
=269 11710778 121.34 14.23 4.69 2.62 (6442)

The quantities in parentheses denote the period of the periodic term in
counter units.

Model used is given by equation (5.7) where LINEAR implies nzl and kz90;
SECOND implies nz2 and k=0; THIRD implies n=3 and k=0 and PERIODIC
implies n=}] and k=l.

———
a

........................
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3rd order polynomial and the sinusoid model was relatively small.
Honaver, there was, generally, » noticeable improvement in the RM$ fit
as the degree of the pelynomial increased.

It is known that the Calibration Table 1 for each gravity meter was
produced by an arbitrary methed of curve fitting o the relative scale
factors from the factoery calibratien procedure. Also, in general, the
least count of the counter reasding recorded is equivalent to
approximately 10 ugal. Prom this information, it would appear that
either a sinuscid or 3rd order polynomial model would be a good
analytic representation of the Calibration Table 1 information in the
range of the counter readings observed along the United States
Mid-Continent Calibration Line. The question comes up as to which

model should be used.

5.2.2 ginuseidal Medel

The reason » sinusoidal model was selected over a 3rd order
polynomial model is based en the fact that, after the linear trend is
removed, the sinuseid represents a simple curve where as the 3rd order
polynomial is » composite of tho simple curves, one a function of x2
snd the other a function eof x’. This makes the polynomial model
someshat undestirable because changes in the coefficients of the 2nd and
3rd order terms are difficult to relate to changes in the basic
characteristic behavior ef the curve it is representing. The

sinusoidal model is easier to interpret what changes in the value of

the amplitude, period or phase angle represent. By using the




101
sinusoidal model, the characteristic behavior of the Calibration
Table 1 can be classified by the period of the sinusoid which best
represents the information.

The determination of the coefficients of the sinusoidal model given
by equation (5.7) where n 2 1 and k = ] was done by a least squares
adjustment of the set of non=linear observation equations. For the
adjustment, the counter readings were assumed to be without error and
the variance associated with each i{ndependent and uncorrelated
observation (value in milligal) was assumed to be of the same constant
value. The solution was iterated until the change in vtrv was less
that 1 part in 10 billion. To assure that the adjusted value of the
peried of the sinusoid would represent a long wave length, the period
sas weight constrained to permit a proper solution to be achieved. The
actusl value of the weight neaded depended on the initial estimates of
the coefficients. The determination of the weights and the good
estimates for the eoo?ficiontl invelved a lot of trial and error. It
was not uncommon to perform 150-300 {terations before a solution was
achieved based on the desired accuracy of viv. The large number of
{teratieons required indicated there uas a very strong dependency that
exists betueen the period and phase angle in the sinusotdal medel.
Hith the period and phase angle being so highly correlated, it is not
feasible to include both quantities as parameters in an adjustment
model and expect it to converge rapidly. Therefore, either the peried
or phase angle must be fixed or heavily constrained within an

adjustment.
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When the peried is heavily constrained which essentially fix its
value, a selution can easily be achieved in a feu {terations. By
obtaining solutions for a number of different periods, graphs similar
to Figure 20 or Figure 21 can be produced for each gravity meter which
show the approximate relationship betueen values of the coefficents of
the sinusoidal model and the value of the RMS of the residuslis. As cen
be seen in sither Figure 28 or Figure 21, changes in the value of
period near the solution nith the minimum RMS of the residuals results
in little change in the RMS of the residuals but means large changes in
the phase angle, amplitude and linear scale facter terms. Using
graphs, similar to Figure 21, estimates for the value of the sinuscidal
model coefficients can be determined for different period of the
sinusoid. From these graphs, » period nesr the minimum RMS of the
residuals was selected for sach gravity meter. Since the value of the
period has little effect on the RMS ef the residuals, all periods used
ind the final adjustment were rounded off to the nesrest thousand of
counter units. To see if the rounding eff would have any effect on the
final adjustments, & number of preliminary adjustments were dene for
various values of the perieds near the reunded off value. The results
indicated That the least squares seultion for the medel used would net

be effected by using the reunded off periods.

8.3 Mathamatical Medals fer Scavity Netasrs

The basic squation used for the 'G' gravity meter {s of the form

given by equatien (2.1) whare C includes such things as the correction

U S R e
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Figure 20 -

The results ef a number of least squares fits of » linear
functien plus a periodic term to the data from the
Calibration Table 1 dated 17 October 1977 for gravity meter

0=~81 for selected values ef the peried.
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Calibration Table 1 dated 14 November 1979 for gravity

4unction plus a periodic term to the data from the
meter 0-220 for selected values of the peried.
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for earth tides, the correction for height of instrument above the

station, the correction for a possible time dependent drift of the

- B MY n e R ale € o A
e ARDNSHEHIA B DAIREIES
2 - ]

instrument and it could include the correction for other environmental
or geophysical effects such as changes in the ground water level and
I! changes in the atmosphere above the statien.

.- In order to make the gravity meter observations independent of the

epoch of the observation, any time dependent effects must be included

in C. One time dependent effect that must be removed is caused by

gravitational attraction of the sun and the moon, commonly referred to

as the earth tide.

5.3.1 [Karth Iids

The determination of the earth tide is accomplished by computing the
effects of the sun and the moon on the gravity value of the station at
the epoch of the observation.

The program used to compute the earth tide was obta{n-d from the
Finnish Geodetic Institute. The program computes the vertical
component of the tidal force to an accuracy of 0.01 ugal based on the

assumption of » completely iigid homogeneous ellipseid of revelution

[Heikkinen, 1978). Since the earth is not reaslly a completely rigid

homogeneous ellipsotid of ravelution, 1n order to obtain a realistic

AR A A s
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value for the vertical component of gravity, the tidal force obtained

- s scaled. The value of this scale factor depends on regional
f; conditions, but a world-nide conventienal value of 1.16 wes recommended
E; by Resolution N 2 of the Internatienal Association of Geodesy in

i Atintmdueindy
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Canberrs, Australia, 1980 [IAG, 1988]. 1In the computation of the earth
tide for each ebservation, a scale factor of 1.16 was applied te the
computed vertical compenent.

The implementation of the Finnish earth tide program as received and
given in Hetkkinen [1978] proved to be very inefficient as far as
input/output (1/0) was cencerned. By making some simple 1/0 changes
which basically involved medifying the subroutine GETREC so that the
170 was done unformatted and only once during the execution of the
pregram, the computation time required to computas the earth tide was
reduced by a factor of approximately 10. After the modifications were
made, it took approximately 0.3 seconds per earth tide correction on an
Amdhal 470 V/6=311 computer cperated by the Instructional and Research
Computer Center (IRCC) at The Ohio State University.

One ether minor preblem invelving the computer program was noticed
and cerrected in the version of the pregram used in this study which
should be mentiened. The program requires information about the
difference between ephemeris and universal time but the program only
knows the di fferences fer the years 1973, 1978-1979. If earth tide
cerrections were te be computed for observetions made during any other
year, it weuld require apprepriste addition of coding in the MAIN
pregram. Since the current difference is slmeost one minute, by net
including this difference could result {n » systematic error of
0.5 ugal [Heikkinen, 1978]). Since the time fer each observation used
uas recorded to the nearest minute, it can be expected that the

accuracy of the theoretical earth tide cemputed weuld be en the order
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of 0.5 ugal.

8.3.2 gCorrgction for the Height of Instrument

In order to assure that the observations at a site refer to the same
point, any correction for the height of instrument must be made. The
correction for the height of instrument above the station is made by
assuming a local gradient of gravity for the station. Since this
information is net generally available, the value of normal gravity,

=3086 oltvis (lﬂ.lu’llll)' is used. Thus the correction to be made is

equal height of instrument in meters times -308.6 which gives the

‘correction needed in units of ygal. This corraction could be the

source error if tﬁcro were a large variation in the height of an
ins*rument at a station because the local gravity gradient can easily
differ from the normal gravity gradient by 20 to 30 per cent or more
[Marsen and Alasia, 1980]. This error could be on the order of 1 ligal

per cm of elevation difference.

5.3.3 Inatrymental Drift

In order to check for the possibility of drift in the 'G' gravity
meter, a model must be assumed which will represent this behavior.
Since the drift is believed to be the accumulative effect of a number

of small tares [Burris. 1980, private communication], the hypothesis

-that these tares occur unifermly could be adopted which could be

represented by a simple linear model such as

ad
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k(t - To) (5.8

there

k -~ the drift rate of the instrument,

t = the epoch of the observation,

10 - some initial epoch.

However, the appropriatenass of including such a term is
jvestionable because of the seemly unpredictable and erratic behovior
¥ the tares. S$Small tares can occur whenever there is any change in
ihe ocperating condition of the gravity meter, such as would be caused
) vibrations during transportation, changes in the ambient temperature
thich might causes the heater in the instrument to cycle on and off
‘epeatedly, or changes in the atmospheric pressure.

A number of least squares adjustments were performed using '
bservations made along the United States Mid-Continent Calibration
ine and a linear model similar to that expressed in equation (5.2)
hich incorporated 8 drift term for each gravity meter. A number of
djustments were made involving different combinations of the various
ypes of drift rate terms. The drift terms tried invelved solving for

linear drift rate for each instrument, a linear drift rate for each
rip, and even a linear drift rate inveolving only ties between the same
tations. The latter drift rate term could be referred to as pight
rift because the ties were made between the same stations which,

snerally, occurred as a result of overnight stops.
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For example, when a linear drift rate for each instrument was
included in the model, there was no evidence of any linear drift rate
for.auy instrument which had observations made over a period of a month
or more. Observations for instruments which invelved a more limited
period did indicate a possible linear drift, but these drifts were
discarded because there were too few observations or the time period of
the observations was too shoré to draw the conclusion that the drift
was the behavior of the gravity meter. The adjustments performed
indicated that the linear drift rates of the type mentioned were not
representative of the characterisitics of any of the gravity meters
used in this study.

This fact became more apparent when linear drift rates for each trip
were included in the model. The linear drift rates determined for a
gravity meter were inconsistent both in magnitude and direction. This
would lead one to conclude that {f there were a linear drift rate for a
gravity meter, it is not of an instrumental nature but possibly a
function of the instruments' handling, mode of transpertation or some
other unknown cause.

No conclusion could be drawn concerning the existence of a linear
night drift rate due to the lack of ; sufficent number of "night’
observations for any gravity meter.

It is worth mentioning that although the gravity meter observations
used in this study indicated no predictable linear drift rate behavior,
this does not mean that a linear drift rate for the gravity meters does

not exist. It is quite possible that 1 all the observations were made
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s0 the ties formed ladder loops instead of the modified ladder and line
loops which typifies the observations in this study, the cenclusion
might be different.

The apparent erratic behavior of the linear drift rate is
demonstrataed latter on in section 6.3.

To demostrate the apparent erratic behavior of a possible linear
drift, an adjustment was porférncd using the same model as used in
ADJUSTMENT 8, see section 6.3, with Tl and T2 both having the value of
24 hours. The residuals obtained were then plottad against time. Part
of the plot for gravity meter 'G-31' can be seen in Figure 22. As
mentioned, Figure 22 showus no indication of any uniform linear

instrumental drift rate.

B. .4 Mathematical Medals Uaing Yalus in Milligal

The values in milligal must be used as the observables in an
adjustment whenever it is unreasonable to use counter resdings as the
observables. This occurs whan a gravity meter has been used over only
a limited range of gravity values, generally less than 608 mgal. In
order to use the counter readings as the observables requires selving
for a long wave length sinusecidal term whose period is always larger
than 4000 counter units which s equivalent to approximately 4000 mgeal.
Trying to solve for the coefficients of the sinusoidal term using a
limit3c range of data would lead to poorly determined values of the
conificients which could be reflected i1n incorrect values for other

parsmeters of the adjustment, such as, linear scale factor terms and
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hﬁ gravity station values. Therefore, whanever a gravity meter is used

I. which has observations spanning a limited gravity range, the
appropriate model to be used would be one using the value in milligsl
t: as the observable.

E! The actual ocbservation made with the gravity meter is the reading
made of the position of counter and the dial after the instrument has
- been nulled. The resding is generally recorded in counter units. The
readings in counter units are to be related to a value in milligal
through th; use of the Calibration Table 1. If one believes that the

gravity meter's behavior remains constant with time and is reflected

via the Calibration Table 1, then the value in milligal obltained from
the Calibration Table 1 would be correct except for a possible
correction to the initial offset and to a scale factor. Thase
correction terms could be considered as part of a required
transformation that must be applied when using the Calibratton Table 1.

For a simple transformation, one could consider a linear transformation

which would imply

;-t z=1ly+R 5.9

1

where

R« some offset value to be applied to Calibration Table 1,

MG MO

1 - scale facter required to be applied to Calibration Table 1,
= y = value in milligal from Calibration Table 1.
Then by revriting equation (2.1) where (0) = 2, C = cy + 6y c3
e and 2 3 1y « R results in
-
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z2+C+S-Gs=0 (5.10)
where
] = earth tide correction,

¢ = height of instrument correction,

e3 = other cerrections due to environmental factors.

14 ene assumaes that station 3' is observed at time i and station Bj
is observed at time j, then by differencing the two consecutive
equations of the form (5.10) for the tuwo different stations, one

obtains
l(yl - yj) +C - cj -G, + Gj =0 ¢5.11)

Since it is assumed that the Calibration Table 1 supplied is relatively
good, the value of the scale factor 1 will be very close to one, and we

can rewrite 1 as ) + 1° giving
Y~y 1y my) € €6 46 =0 (5.12)

The similar transformation needed for the calibrafion Table 1 could

be expressed as a higher order polynomial transformation giving

n .
k Kk
y-y-o-zl'(y-y)*c-C-G +G6,. =0 (5.13)
RS TP A B | T B
where
n - the order of the transformation,

l{ = the scale factor corresponding to the i~th degree,
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Then {f two successive ebservations were di fferenced, letting
(y| - yj) be equal to Vlj' the resulting equation would be the basic
model for gravity differences. It s appsrent that if n> 1, gravity
differences can no lenger be used s the observable in the model given
by equation (5.13) since (y? - y? )= (yl - yj)" only when n = 1. PFer
example, if n =2 2, the right hand side of the previous equation becomes

y? - Zy‘yj S y} which is not equal to y? - y2 except in the trivial

J

case when y. = yj. :

5.3.5 [lMathematical Medel fer Counter Reasding
The functional relationship of the observable, (0), as given in
equation (2.1) can be expressed approximately by equation (5.7) with

n3zland k 1. Using the information in equation (5.7), equation

(2.1) can be reuritten as

Z 1 d' + 2 Aj cos( 3!?-+ ©; ) +S+C-G=0 (5.14)

=1 j=1

and similarly equation (2.2) can be rewritten as

2wd

¢ me1
lZl"(d -d ) + Z z ( -1) AJ cos LN mj) + (5.18)

c,.- cz - Gl + G2 =0

Equation (5.13) then becomes the basic mathematical model for the
'0* gravity meter when the observed counter readings are used as the

observables.

N |
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:i The use of equation (5.18) implies there must be a sufficient

:_ distribution of the observations made wmith a gravity meter to solve for
the coefficients of the sinusoid. Hhat sctually constitutes a
sufficient distribution is difficult to state. But clearly, certain
distributions of the observations wmould not be desired. For example,
if all the ebservations were made at stations having approximately the

same gravity value, then the model expressed by equation (5.18) would

2 . be inapprepriate.

g




CHAPTER SIX

mmn'mmmmmmn

6.1 Selution of tha Mathamatisal Medal

The mathematical medel used for the gravity adjustment program can
be expressed by F(X,L) 2 0, where F is a vector of nonlinear functiens
of the parameters X and the ebservables L. The problem is to find the
vectors X and L such that vtrv is » minimum subject to the constraint,
P(X,L) 8 8. Even theugh the weight matrix for the ebservations, P, is
not a unit matrix, the methed used to solve this problem is commonly
referred to as "least squares™ even though the more apprepriate name
weuld be "weighted least squares™.

The selution of this type of nonlinear leasst squares problem is by a
Nesnton=Gauss iterstion, which expresses the nenlinear functien F ss a
Tayler's series about seme initial values of the parameters and
observables. By ignoring the secend and higher erder terms of the

Tayler's series, it reduces te selving a linear least squares problem.

14 the function F is net satisfied by the adjusted parameters and
observables obtained, the selutien 1s iterated by using the asdjusted
parsmeters and observables as the new peints of expansien fer the

Taylor's series [Pope, 1972]).

116
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t The multivariate Taylor's series expansion of F(X,L) about X ,L

: with the condition F(X,L) = 0 becomes

= 3F - _ aF - .

- X X-x) + 3T (t-1) + F(x,L) =0 6.1)
g xo"‘o xo'l'o

with the notation meaning the partials are to be evaluated at xo'Lo'
To simplify the notation, let X = X - Xo, A= aFlaflx L and
o' o

8 = 3f/3L l X_,L_- The residuals, V, of the observables are given by
o 0

VaTl- Lb where [ is the adjusted value of the observable and Lb is

the observed value. This relation can be expressed as

L-Lo-v-i-Lb-Lo 6.2)

which allous equation (€6.1) to be written as

. aF X - a—F .a—F- - =» -
$13 (x xo) + o v - (Lb Lo) + F(xo.Lo) (1] 6.3
xo"'o Xo.L° xo'Lo

Using the notation previocusly mentioned yields

v

.- - (6.4

F AX + BV + B(Lb Lo) + F(xo,Lo) -0

T

- . and by letting W = on.l.o) - BCL, - Lo+ equation (6.4) becomes

-

- - AX + BV + W= 0 6.5)
With iL being the covariance matrix of the observables and 0: being

b
- some constant, the weight matrix, P, for the observables is related to
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The derivation of the standard linear least squares problem is well

documented [Hamilton, 1964; Mikhail and Ackermann, 1976¢] and yields

% = -(at(ep~'8%)"'a) " "at(ap~18t) "y 6.7

V=-rstp 'Y (ax + W) 6.8

With the best estimate of the vectors X and L being given by

X, =X, + X 6.9)
t; =L+ v (6.10)

If these best estimates of the parameters and observables do not
satisfy the function F, the solution nesds to be iterated with the
point of expansion of the Taylor's series now being ¢§;.f;). This
means. the partials are now evaluated at the nem point of expansion and
the W matrix 4s recomputed. 1If 9 denotes the vector of residuals for

the observables from the previeus fteratien, then N can be expressed as

W= F(x L) -8V €6.11)

noting thet for the zeroth iteration V will be a zero vector.
The iterative process centinues until the mathematical model is

satisfied. Due to round—off error in the computer's representation of
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values and computation of the matrix operations, the chances are the
model will never truly be satisfied. However, it can generally be
satisfied so F(X,L)<c , where € is a vector as small as desired within
the limits of the round—off error of the computations. Therefore, the
jteration should continue until F(X,L)<c {8 satisfied. The number of
1tor;tionl required will depend on how close the initial parameter
values and observables are to.tho values required to satisfy
F(X,L) = 0.

The mathematical model F(X,L) = 0 is really the composite of two

functions, F _(X,L.) = 0 and F_(X,L,) = 0, whers the vector of

1 1 2 2
parameters, X, is the same for F‘ and Fz. Further, Ll is the vector of
observables from gravity meters and L, is a vector of derived absolute

2

gravity station values from efither permanent or portable absolute
gravity measuring devices. This implies that there are "observed”
gravity station values. These values are "observed™ in the sense that
a variance for the station's gravity value exiats. This type of model
has been referred to ss the "combined observation and parameter model
with weighted parameters™ [Uotila, 1967].

I¢ one partitions the A, B, P and W matrices into two parts; part 1

for F (X,L ) = 0 and part 2 for F (X, ) = 0, and letting M = e~ lat

1 1 2

where the observed values of L‘ and Lz are not correlated then
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=1 t
H1 0 Bl 0 P' 0 Bl 0
M= - (6.12)
0 M o B o p' |l o 8¢
2 2 1 2
It can then be shoun that equations (6.7), (6.8) and (6.10) can be
expressed as
t -1 -1 t =1
Al H‘ 0 AI A‘ M‘ 0 V‘
X= = (6.13)
A2 0 Hz Az I\2 0 "2 wz
v p' 0 1[8% o0 1M, 07 '[[a W
V= ! - - ! 1 ! ¢ ! 1 X + 1 (6.14)
Vz LO l’l ] 0 32 0 "2 Az Uz
r r
- I‘o' LI:1 vl
Lo = . + (6.15)
T L v
1 °, L bz . 2
which can be further simplified to
X (A M A1 + AZ"Z 2) (A M \vl + AZHZ 2) xf
v, pTleinT (A X + W)
V= -- | . (6.17)
V2 P 05Kz (A + W)
_ l.':’1 Lb1 + Vv,
L, = - (6.18)
T L, +V
o, b2 2

In addition, it can be shown that 0‘: s vtrwn.r. where D.F. represents




. i

T,

T TY

e
AP MO
AP RRREM

121

the degrees of freedom of the adjustment which is equal to the number

of equations minus the number of parameters in the model and
vipy = (ax + W) Ml 6.19)

or

vipy = V1’1V1 + vzpzv2 - (xt A + )n w + (xt A + W )nz , (6.20)

Additional examination of the structure of the A, 8, P and W
matrices reveals that Al' 'l' 'l and W matrices can be further
partitioned by trips and AZ’ .2' '2 and Wy matrices can be partitioned
by each set of absolute gravity observation equations. Applying this

information, equations (6.16), (6.17) and (6.20) can be written as

2 l" t =1 -l 2 rl ¢ -1
e Igl jZ]A'j"'JAij izl jZ'A;j";jwij ¢6.21)

l
11 ll Il

1
Pls ls ls(A X + wls)

Ve - (6.22)
1

Pzr'zi"zt(“ X+W
-1

| 2t 2t 2t

[ (A R

T
ll)

L

P (A x + v, )

r

vipy = (x A + W, )M, 6.23)
igl J§1 R i

where s = r,ond ¢t = ra with r, being the number of gravity meter trips

made and ra being the number eof sets of abselute gravity observation

P S S . e -




122
equations.

The lland Pl-atricos have a very uwell defined pattern that can be
exploited in foruiﬁg the Hl matrices. Assuming that all ohse;vations
made With a particular gravity meter over a trip have the same
variance, O%. where 1 denotes the trip number, then the covariance

matrix of the gravity meter observation for trip 1 is given by

-1
Py = o% 1 (6.26)

where I is and nxn identity matrix and n is the number of observations
in the trip.
The elements of the B matrix for the gravity meter observations for

trip 1 are given by

= OF : -
bii gTi 1<i<n~1
b,, = oF I<i<n=1 and j=i+] (6.25)
i, )
'bij =0 j>i=1 and j<i

there lj is the j=th observation in trip 1. The patterned structure of

‘he B matrices for the gravity meter observations is similiar to

o 0ox
o X %X
b % 3 )
* oo
ooo

L ]

.
oo
o oo

(6.26)

.
.
L]
L]
L]
.
*

o
o
o
L
o
L ]

.

*

x
o

here » represents a non—zero element and 0 represents a zero elament
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of the matrix B.

Since

1.t
- (6.27)
Mt B PnBn ¢-2

by substituting equation (6.24) and (6.25) into (6.27) gives

M, = t 6.28)
z " T BBy
%
with the value of the elements of "1] given by
2 2
ST T T e 1<i<n=1
= = - 2 - - (6.29)
mij mji blj J=i+1 and 1<i<n-1
mij = mji =0 j>i+1  and 1<ic<n-1
There are times when the B matrix has its elements satisfying
bii = -bij j=i+1 and 1<i<n-1 (6.30)

This occurs during the initial adjustment {teration when the parameters
other than the gravity s:tation values have an initial value of zero.

In which case the inverse of H‘] matrix can be obtained directly
[Gergory and Karney, 1969, pp 45—46] from the expression

2 o1 1
01 H1‘ . c (6.31)

where n is the order of the matrix "ll' k is the value of » non-=zero

element of the B matrix squared and the elements of C are given by

s . . e dog 2 P PR - -
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Th i(n = j +1) ig] (6.32)

6.2 Computer Pregram Algorithms

The computer program developed to handle the adjustment was written

in PL/1 and designed to run on the Amdahl 470 V/6-~11 computer using a

virtual core region of 2048 Kbytes. The reason the program was written

in PL/]1 was to allow for dynamic allocation of arrays and the ease of

handl

ng output formatting.

The PL/]1 program written to perform the gravity network adjustment

was designed to meet the following requirements:

a)

b

e)

[}

e)

)

g’

tho'progran should be able to handle any number of unknowns los;
than 32767.

the program should be able to determine what stations are in the
network, what instruments are being used and should be able to
break the observation set into trips with the capability eof
handling instrumental tares.

the program should be able to use different models for each
instrument.

the program should allow for full variance—covariance weighting
of any parameter.

the program should be able to do post adjustment analysis.

the program should be able to iterate on the solution.

the program should have as few fixed values and limits as

e P S P PPy

" TTe
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possible.

For the most part, all the above requirements were satisfied except
for one minor restriction. Due to » PL/} limitation which restricts
the size of an array subscript to a maximum of 327¢7, the present limit
on the number of observations allowed in any trip is 181 observations.
This restriction is necessary because when the weight matrix, H- » for
the equations of a trip is full and it is required that all elements of
the matrix to be in core at the same time. This limitation has not
caused any problems in this study.

The program can be thought of as consisting of three sections:
Pre=Processor, Adjustment and Post-Analysis. The options for each

section are controlled by values assigned to a fixed binary external

array of 130 elements.

6.2.1 [Pre-freoceascr Sectien

By prior analysis, the input data set of the observations had all
dotoctablq blunders removed and any large suspected tares flagged. The
method used to detact the tares and blunders involved determining the
mean gravity difference between all of the stations which were tied.
The gravity difference for each gravity meter tie was determined using
the tho.valuos in milligal from the gravity meter's Calibration Table 1
which had been interpolated from their counter reading ebservations.
Any large difference which was greater than 100 ygal from the mean
gravity difference betueen the two stations tied was flagged so the

observations invelved could be investigated. In the majority of the

a ' At A da a T . ‘o X - - " A = O SN NN WP S S W _ -
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cases, the flagged observations had notations on the original
observation sheets which explained why a large difference might has
been encountered. The most common notations were "beam vibrations™ and
"meter off-heat™. Using this information, it was possible to determine
which observations should be treated as a tare and which ones were
blunders. A blunder is indicated when two consecutive gravity meter
ties are flagged as suspect. The ;onnon observation involved in the
two ties would be labelled as a blunder and removed from the data set.

The purpose of this section is to determine the make—=up of the input
data set of observations. It determines how many different stations
and instruments there are and breaks the observations into trips based
on a number of criteria. 1If it has been determined that a tare has
occurrad batween observations, then the current trip ends with the last
observation before the tare and a new trip begins with the first
observation after the tare. Based on the time inﬁerv.l betueen
observations, a new trip is begun if the time interval exceeds a
maximum time specified which depends on whether the time interval is
betwaen the same station or different stations. After a tentative trip
has been identified, i1t is checked to see that there are at least a
minimum number of observations in the trip. If not, then the
observations in that trip are deleted and are not included in the
adjustment.

After the observations to be used have been ;dontifiod and broken
inte trips, the stations are assigned parameter numbers based on

ascending order of their asssigned identification code. The
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identification code is efither the IGB (International Gravity Bureau)
number, tf the station was part of the IGSN 71, or some other arbitrary
assigned code for any other station. The instruments are assigned a
parameter number based on ascending order of their assigned data set
number and instrument number.

Any instrument requires a model different from the default model,
which was the model using the value in wmilligal as the observable was
code, input, saved, and the remaining model parameters were assigned.
This is followed by the assignment of tnitial values to all the
parameters based on input information. A final check is made to be
sure that there are sufficient redundancies for each instrument and
that all the stations are inter-—connected by observational ties to

guard against trying te solve a singular system.

¢.2.2 Adjustment Sectien

The purpose of this section is to actually perform the weighted
least squares adjustment. For each iteration performed, all the
non=zero partials with respect to the parameters and observables are
computed along with the model misclosures and the full weight matrix,
H-i. for each trip is formed. See Appendix A for a detailed discussion
of how this is accomplished. The centribution to the normal equations
for each trip is then computed by performing only non—zereo
multiplication. See Appendix B for a detailed discussion of how this

is done.
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The solution is iterated until the model is satisfied or the
iteration count exceeds the maximum allowed. The model F(X,L) is
satisfied for some predetermined value of €, when the cenditien

EB(X,L)< g is fulfilled.

6.2.3 Poat-Analvsis Ssctien

The purpose of this soetioﬁ is to do a post—adjustment analysis of
the results of the adjustment. In this section the variance of each
residual is computed, and the normalized residuals are formed. For
details on how this is done, see Appendix C. Any large normalized
residual is listed to be checked for possible blunder or tare. The
meaning of large is based on the fau—eritoria as outlined by Pope
[1974] and depends on the number of observations and the significance
level ;oloctod. In this section, the root mean square of the residuals
for each instrument is computed. The program also computaes an estimate
of the apesteriori accuarcy of the observable by trip and instrument
based on the estimated initial variance of the observable, its

residual, and the aposteriori variance of the residuals.

6.3 Jsating Yaricua ledels

Por thes comparison of the various possible models, three different
adjustment were performed using the same set of observation data. All
adjustments were made using the same set of absolute sites as centrol.
The estimated .tand‘or;ors assigned to the absolute sites are given in

Table 8. The values in Table 8 were based on the assumption that the
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value of gravity determined at a site using the absolute gravity meter
developed by either Marson and Alasia or Hammond had the same accuracy
and gravity values did not include any bad determinations. B8y

reviewing the gravity stations in Table & and Table 8, see Section 4.2,

.which had multiple determinations, it can be seen that 136E0S, Great

Falls, values differ by 101 ugal and that 185211A, Boston, values differ
by 109 ugal. 1It follows that with a probability of 0.99, a single
determination made with either apparatus would lie within 2.870 of the
mean gravity value for that station. If it were assumed that the mean
gravity value at s station were located at the middle of the tuwo
extreme gravity values, then the accuracy of a determination could be
estimated to he better than 8 = ((x2 « x1)/2)/2.57 where x2 is the
largest gravity value determined, xl is the smallest gravity value
determined, and s is the estimate of the accuracy of a determination.
Using this relationship, the accuracy of the absolute gravity meter
determinations which could account for the different gravity values
reported would be approximately 20 ;;gal instead of the reported 10 Lgal
accuracies. The accuracy of 115V0l, Casper, was kept at 28 jygal
because there was good no reason to lower its reported accuracy.

The variance for each gravity meter cbservation uas assumed to be
the same for all gravity meters. The variance assigned to the
observations made with the gravity meters were 0.0004 counter units? or

400 ugalz. dopondini‘on which type of observable was used in the model
for each gravity meter. The above values were based on preliminary

adjustments which indicated that no large differences existed between
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the aposteriori estimates of the accuracy of the cbservations for any
gravity meter. A total of 4532 gravity observations were considered of
which 48 was rejected because of detected tares or blunders. The
remaining §484 observations, made with 27 different gravity meters,
resulted in 837 different trips based on the value of 24 hours for Tl
and 6 hours for T2 (see Section 3.3.2). The minimum number of
observations in any trip is 2 while the largest trip consisted of 23
observations. See Figure 23 for a histogram of the frequency of the
trips.

The three adjustments will be referred to as ADJUSTMENT A,
ADJUSTMENY B, and ADJUSTMENY C. All adjustment models included a
linear scale factor term but no drift terms for each gravity meters.
ADJUSTMENT A was performed using as observables the observed counter
units transformed to their values in milligal by using the factory
supplied Calibration Table 1. ADJUSTMENT B and C were performed using
as’ the observable the observed counter readings whenever the range and
distribution of the data justified their use. Otherwise, the values in
milligal were used. Both ADJUSTMENT B and C models included a long
wave sinusoidal term to represent the Calibration Table 1 information.
ADJUSTMENT B°'s model contained ne periodic screw error terms whereas
ADJUSTMENT C's model included periecdic screw error terms having a
porio& of 1206717 counter units fer selected gravity meters. All
gravity meters used in the adjustments had "old™ gear boxes installed
in them. The gravity meters which included » periodic screw error term

Here selected based on the number and distribution of their
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Table 8 — List of absolute stations used in ADJUSTMENTS A, B, and C.

18G/GsS
Code

119504

119803

os1s0C

119264A

119Co3

119Co1

119944

15508D

155vVo1l

12172A

152214

15860A

163 -~ International Gravity Bureau

Station
Name

McDonald Obs.,TX
McDonald Obs.,TX
Miami,FL
Holloman, NM

Mt. Evans,CO
Trinidad,CO
Denver,CO
Boulder,CD
Casper,WY

San Francisco,CA
Boston,MA

Bismarck,ND

G$S — Geodetic Survey Squadron

Gravity Value

tn Agal

978820097
978823655
$79004319
979139892
979256059
979336370
979593272
979608498
979947244
979972060
980373659

9806128382

Estimated
Standard
Error

in Mgal

20

20

20

20




132

HHHHI HHHITIT _-l
FHTFEER PP : HIT THITHI T
apgygeanr H- | i X 1 A 1 4 L; x 1 ] 1 fnl.d
3 - - -4 §-4 H E o g
: : . Hi !
1k ? i ru < 5 ] ﬁ Wh H 1” - 98

ry
3
L 1 o
T
re
T
n
:
e
rea
T
re
— ]
) —
rm

1%

ey

=

L

e
- ——
+ v
=
-
ram
e
" .
T 11
r
> v
. -
[
CRGERVATIONS 1IN A LOOP

ros
3
e
0
»
sy
3

s

-
b=
"
-
f—
- f—
-
-
- =
-

Pledlbglly o 51 TN o) IR 3 B 1T 1 BINE ] 1 . L

RER X N I DBk vl tatidobeifoeotta Qo 0000l LR LI

Figure 23 - Nistogram eof the trips formed and used in the adjustments.

‘ - o o . - e .

e 'T-kw et bsiosandhnnci, PRI N S SRS N et A A ol i tes Ao o s a'a PG S

a & i




s ot angil ol ol cadiL asate A A S T A B

F-
I .

..;'» .

133

————"

observations. Whenever periodic terms were included, their periods

were held fixed and their phase angles were assumed to have a variance

2

of 0.01 radians” or ~32.8 dogroosz. The periods were held fixed to

eliminate the high correlation which exists between the period and the
phase angle in the periodic term. The phase angles were weakly
constrained to reflect the accuracy of the .stinaf. of the value of the
phase angles determined from the residuals of the observations from
ADJUSTMENT A. An estimate of the phase angles for each gravity meter
was determined by using a least squares adjustment which used only the
residuals associated with the observations from ADJUSTMENT A. The
model used was a sinusoidal term having a period of 1206/17 counter
units. From these adjustments, the accuracy of the phase angle terms
wuas always less than 0.1 radians. All the accuracies for the phase
angles were rounded off to 0.1 radians and used in ADJUSTMENT C.

The initial estimates for the amplitude, phase angle and period of
the long wave length sinusoidal term for the gravity meters were based

on the analysis of each gravity meter's Calibration Table 1 data. The

initial estimates for the amplitude and phase angle of the periodic

9 screw error terms were determined from a least squares fit of the
residuals from ADJUSTMENT 8 for each gravity meter. A summary of the
results of the adjustments can be found in Tables 9-12.

o Reviewing Table 10, ene finds that the aposteriori estimate of the

acocuracy of the observatiens for each gravitly meter decreased slightly

frem ADJUSTMENT A values to ADJUSTMENT B except °'G=81' which showed a

o large change. The reasen for this change is unknown at this time and

o a . a s - -
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Table 9 - Summary of

Number
of Observations

Total Number
of Parameters

Number of
Gravity Stations

Number of Scale
Factor Terms

Number of Periodic
Amplitude Terms

Number of Periodic
Phase Angle Terms

Number of
Weighted Parameters

Number of Irips

Number of Iterations
-r

vy

Degrees of Freedom

Aposteriori Variance
of Unit Weight
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the results of ADJUSTMENTS A, B and C.

ADJUSTMENT ADJUSTMENT ADJUSTMENT
A B c
486 %686 44384
2383 317 351
256 256 256
29 29 29
0 16 33
0 16 33
12 28 45
837 337 837
b 2 2
5025.319 36464.093 3433.810
3874 3383 3341
1.48942 1.08820 1.02778

® T & TTONFT e TR T T




fv

-

4 e m . A . a

Table 10 — Summary of aposteriori estimates for the accuracy of
observations made with the various gravity meters used in
8, and C

ADJUSTMENTS

GRAVITY
METER

G-10
D17
D—43
G—44
G-=47
G-50
G—-68
G—381
G-8la
G-~103
G111
G-113
G-118
G-115b
G-123
6-125
G-130
G-131
G—140
G=-142
-157
G-187c
G-175
G176
G--191
6-220
G-253
=268
G—-269

Average for Al

Gravity Meters
on 18 October 1977.
27 October 1977.

on 30 August 1977.

A,

ADJUSTMENT

1

A

19.78
17.06
30.97
16.49
15.11
29.35
31.97
31.21
18.72
22.03
22.64
21.9%4
19.42

21.22

21.45
25.47
16.82
18.46
18.13
23.83
23.47
22.74
21.76
29.14
18.28
18.09
26.56
21.9%6
18.58

22.71

stanard errors are 1nﬂgal.

ADJUSTMENT

16.78%
13.76x»
25.85n
16.38
16.84
29.29
29.71xn
18.58%
17.93%
20.69%
20.81x
21.7¢
17.92x
19.59%
22.42
23.82%
16.84
17.62%
18.22
21.86x»
20.29%
21.57%

"21.76

27.%6
18.06
17.05x
23.72%
20.71%
17.67%

19.73

ADJUSTMENT

c

17.03%
13.73%
285.67x»
15.66
18.40
29.32
28.52x
18.22%
17.67%
20.20x
19.56%
21.81
17.24%
19.08»
22.06
22.61x
16.87
17.61%
18.18
21.04%
20.09%
21.33%
21.78
28.01
18.19
16.62%
23.62»
20.01%
15.60%

19.24

® = Calibration Table 1 changed due to addition of electronic readout
b - Calibration Table 1 changed due to replacement of long laever on
c = Calibration Table 1 changed due to addition of electronic readout

% = {ndicates that the standard error {s in dial units, all others
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fable 11 = Summary of the amplitudes of the long wave sinusocidal terms
for various gravity meters used in ADJUSTMENTS B and C.

Gravity Initial Ad justment Adjustment Fixed
Meter Value 8 Value C Value Period 1
G-10 1624 1576 1584 6000
G-68 3742 3617 3507 11000 4
G-81 5502 5339 8347 10000
6-31a 817 332 388 5000
G--103 1028 984 1010 7000
6-111 2943 2851 2852 9000
G-118 120 . 110 103 3000
G-115b 300 267 266 5000
G-12% 2174 1860 2182 10000
G—-131 410 367 373 5000
G—14k2 586 581 563 5000
6-157 27690 2646 2638 10000
6-157c 1827 1716 1787 8000
G—-2290 2158 2441 2078 8000
G-268 48764 4574 4527 11000
G-269 635 758 655 7000

A1 values are in units of,‘gax except the periods which are in counter
Inits.

) — Calibration Table 1 changed due to addition of electronic readout
on 18 Uctober 1977.

» = Calibration Table 1 changed due te replacement of long lever on
27 October 1977.

} = Calibration Table 1 changed due to addition of electronic readout
on 30 August 1977.
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Table 12 - Summary of the amplitudes of the periodic screw error terms
for various gravity meters used in ADJUSTMENT C.

All
the

Gravity Number of
Meter Observations
G-10 164
G—68 (31
G~-81 %27
G~-8la 171
G-103 125
G-111 427
6-115 369
G-115b 3g0
G-125 140
G-131 350
G-142 77
G-157 438
G-1587¢ 172
G=-220 266
6-253 114
G-268 237
G-269 147

Initial Adjusted

Value Value

7.74
18.54
8.69
2.40
8.28
17.22
6.95
4.81
12.31
4.43
7.19
%.19
8.17
7.35
5.40
10.06
18.52

'™

-

-
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>

(3.9
(6.12)
(2.09)
(4.56)
(3.80)
(2.45)
(2.5
(2.19)
(3.10)
(2.39)
(3.87)
(2.54)
(3.84)
(2.95)
(3.56)
2.79
(3.50)

values are in units of gygal and the values in parentheses represent
estimated aposteriori standard error.

Calibration Table 1 changed due to addition of electronic readout

on 18 October 1977.

Calibration Table 1 changed due to replacement of long lever on

27 October 1977.

Calibration Table 1 changed due to addition of electronic readout

on 30 August 1977.
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was unexpected.

The value of the aposteriori estimate of the accuracies of the
observations found in Table 10 is based on the following assumptions.
First, the estimated variance of the adjusted observations and their
true variance for each gravity meter are nearly equal and will be
assumed to be equal. Secondly, the normalized residuals for each
gravity meter are assumed to be normally distributed and are sffected
very little by changes in their assumed observational accuracy. It is
known that for a least square adjustment, the variance of the adjusted
observations is a function of the variance of the observation and the
variance of the residual for the observation. The varisnce of an

adjusted observation is given by

2 2 . g2 (6.33)
%L, "%, T %, \
a b i
where

02 -~ variance of adjusted observations,

Ly

af - variance of the observations,

oa: ~ variance of the residuals.

A similar expression exists for the estimate of the variance of an
adjusted observation. It is given in the following equation where *
means the values are estimated quantities derived from the adjustment.
02 = 8{ - 83 6.34)

a b i

If it were assumed that the true and estimated variance of adjusted

observations were equal, then the following expression is obtained by
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substituting equation (6.33) into (6.34)

2
% v,

a ]
=02 +9g2 - g2 (6.35)
Ly T

b
The estimated variance of the normalized residuals for a gravity

meter is given by

“2
vV
—-L = k (6.36)

~o
Oy

=1

i

where V 1is the residual of the observation i and the value of k is the
normalized variance. The expected value of the variance of the true
residual of the observations according to Pope [1976] is one. Further,
since the value of the residual of an observation is not effected
greatly by changes in the variance of that observation, one would the
true residual of an observation, Vi. to be nesrly equal to the
estimated residual of the observation, 61. In which case, the variance
of the true residuals is related to the estimated variance of the

estimated residuals by

2 32
ovi - kov‘ (6.37

By substituting equations (6.36) and (6.37) into (6.35) results in

the relationship used to obtain the aposterior{i estimate of the

accuracy of the observations found in Table 10.
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[

02 =02 + ( -‘-Z—v-?-- 1 )62 (6.38)

l.b Lb n 86 Vi

Since there was no reliable information about the accuracy of the
observations made with the LaCoste & Romberg gravity meters, an
accuracy of an observation had to be estimated. The value selected was
0.02 counter units which is approximately equivalent to 20 ygal. This
value was based on the results from preliminary adjustments which
tested various estimates for the observational accuracy. The
aposteriori estimate of the accuracy of the observations from these
adjustments indicated accuracies around 0.02 counter units for sach
gravity meter would be appropriate. Using the relationship expressed
in equation (6.38), the values found in Table 10 were computed after
the final adjustments had been done. These values indicate that the
gravity meters used in this study had approximately the same
observational accuracy. It is in the range of 0.015 to 0.025 counter
units which is equivalent to an accuracy of about 15 to 25 ugal.
counter units.

To determine Of‘thoro is » signtficant difference between the
adjustment medel used, it would be convenient if a statistical test
existed to test the significance ef the nonlinear models used.
Unfortunately, the tests proposed for testing nonlinear hypotheses are
often too complex to be used in practice? and depend on the nonlinearity
of the problem [Hamilten, 1964, p 1%7). 1In practice, tests for the

linear case are performed. Considering that the tests will be inexact,

PO PP S SP I | o A L e "y
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a greater significance level for the tests might be warranted.

Assuming the linear model for the two adjustments, ADJUSTMENT I and
ADJUSTMENT II, used the same set of observations, then one can test if
a set of parameters, Q, has any significant effect on the adjustment by
performing the adjustment with and without the Q-parameters and form a
test statistic, F, based on the degrees of freedom of the adjustiments,
the number of additienal constraints, and the values of the vtrv.

Let ADJUSTMENT I be performed including the Q—parameters and
ADJUSTMENT I1 be performed excluding the Q—parameters. Then the null
hypothesis that all Q—parameters could be set to zero is rejected if

vepv,, - iy,
-=>F (6.39)

Vth| s s,r,1-a

where r is the degree of freedom for ADJUSTMENT I and s is the number

F =

of Q-parameaters.

Using this concept, a test was performed to see if there was a
significant difference between ADJUSTMENT B and ADJUSTMENT C at the 5X%
significance level. This test would indicate i1f the periodic screw
error terms included in ADJUSTMENT C were significant. From
information contained in Table 8, the test statistic, F, was calculated

based on VPV = 3433.810. VPV = 3664.095, r = 3341 and s = 34 which

results in F = 6.02 with F = 1,43. Therefore, at the 5%

34,3341,0.95
significance level, the null hypothesis that the periodic screw error
terms are not significant is rejected.

Unfortunately, there appears to be no known statisical test which

can be used to test ADJUSTMENT A against ADJUSTMENT 8 or ADJUSTMENT C
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bacause ADJUSTMENT A involves & nonlinear relationship of the true
observables, ceunter readings.

For very large degrees of freedom as in these adjustment, F-tables
are generally not available, however, » fairly good approximation to
the F-distribution percentile uwhen the degrees of frecdom are larger

than 30 according to Kessack snd Henschke [1975] can be obtained from
a
log Fa (V‘,Vz) = ( fﬂ;f?T;) cg (6.40)

where h = 2v1v2/(v1 + vz) and g = (Vz - Vl)/V1V2 with the values of a,
b and c being a function of O . See Table 13 for some selected values.
It should be noted that vl and Vz represent the degrees of freedem
of the numerator and denominator respectively.

It is clear that, whenever possible, the original ceounter readings
should be used as the observable in the model for a gravity base
station network adjustment. Une possible way of accomplishing this is
to model the Calibration Table 1 information by means of a leng wave
sinusoidal term. The use of such a model requires the observations be
made over a sufficiently large range and be adequately distributed
throughout that range. In addition, the periodic screw error terms
shaould alsc be include in the model provided it can be justified by the
distribution of the data. 1In order to check whether a periodic screw
error term for a particular gravity meter should be included in the
model, graphs similar to those in Figure 24 and Figure 28 were preoduced
for each possible period of the perfodic screw error term. If the

distribution of the observations over the period selected was lacking,




g
3 163
: Table 13 — Values of the parameters used in the approximation of the
L‘ F=distribution for large degrees of freedom.
_ Value of R Value of a Value of b Value of ¢
‘ 0.5¢0 0.0 — 290.000
0.78 0.5859 0.58 0.355
A 0.99 1.3 0.77 0.527
0.95 1.4287 8.95 0.681
".“ 0.975 1.7023 1.14 0.846
' 0.9 2.0206 1.40 1.073
1 0.995 2.2373 1.61 1.250
[‘ 0.999 2.6841 2.09 1.672
0.9998 2.8580 2.3¢ 1.857

Ri( MRS
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as is the case in Figure 25, then including the periodic screw error
term for that period in the model might not be appreopriate. However,
if the distribution is similar to that given in Figure 24, then it
would be appropriate to include a periodic screw error term for that

period.in the model for that instrument.

6.4 Conzistency of Abseluts Sravity Valuss

As can be seen in Table & and Table 5, see section 4.2, some of the
values of gravity determined by the Italians, Marson and Alasias, differ
considerably from the value determined by Hammond at the same site.

The reason for these differences is not known at this time but is
presently bBeing investigated by Hammond. To show the effect on the
station values of tha control selected for a gravity base station
network adjustment, three additional adjustments, ADJUSTMENT D,
ADJUSTMENT K. and ADJUSTIMENT £, were performed using ADJUSTMENT C'S
model. ADJUSTMENTS D, E and F used the same model but with difference
absolute stations constrained. 1In ADJUSTMENT D, the absolute stations
constrained were those determined by Hammond. In ADJUSTMENT E, the
absolute stations determined by the Italians, Marson and Alasia, were
constrained. In ADJUSTMENT F, only four absolute stations were
constrained. The four stations selected te be coenstrained were the
ones whose determined values were in good agreement with both Hammond's
and the ltalian’s values. A summary of the adjusted absolute station
values can be found tn Table 14. A summary of how the adjusted

absolute station values differed from their initial values for
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RANGE OF OBSERVATIONS 1559 COUNTER UNITS

R TOTAL OF 203 OBSEAYATIONS
DASHED CIRCLE REPRESENTS 8.3%

. Figure 24 — Distribution of a set of observations for G-131 assuming a
L J period of 1206/17 counter units - set no. 1
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RANGE OF OBSERVATIONS 1317 COUNTER UNITS

A TOTAL OF 127 OBSERVATIONS
DASHED CINCLE AEPRESENTS 6.3%2

P

Figure 25 =~ Distribution of a set of observations for G-131 assuming a»

Al b e &

period of 1206/17 counter units - set no. 2
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r Table 14 -~ List of the values the absolute stations used and the
R results of ADJUSTMENTS D, E, and F.
!JJ
L I8G/GSS Station ADJ. D ADJ. E ADJ. F
- Code Name Value Used Value Used Value Used
:f. 119804 McDonald Obs. 978320087 972820097 978820092b
- 119803 McDonald Obs. 978823655
n 0s8150C Ml amié 979004319
) 11926A Holloman 979139600 979139584 979139592b
119C03 Mt. Evans 979256059
N 119C0l Trinidad 979330382b
f 11994H  Denver 979598277 979598267  979598272b
‘ 185050 Soulder 9796038601 979608492
3 155vo1 Casper 9799472442
b 12172A San Francisce 979972060
:. 1585vo3 Sheridan 980208938b 980209007
t. 15221A Boston 980378673 980378659 980378666Db
s 156E05 Great Falls 980497339 980497412
e 15560A Bismarck 98012882
Number of Observations 4684 44384 4484
: Number of Parameters 351 351 351
tvv Number of Weighted
[':’ Parameters 44 43 37
[ Number of Trips 837 837 837
. Number of Iterations 2 2 2
b vV PV 3817.478 3578.143 3337.026
Degrees of Freedom 3340 3339 3333
VI Aposteriori Variance
A4 of Unit Weight 1.058314 1.07162 1.00121
p - - -
b
- 1GB = International Gravity Bureau
& G8S — Geodetic Survey Squadron
i’ NOTE: The variance for each gravity value is assumed to be 400 dgal
hd except those marked with an *a* which have a variance of 625 ygal and
[ those marked with a 'b’ which have a variance of 200 4gal . The values
, of gravity are given in units of Mgal.
!
b
S
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Table 15 — Summary of the difference between the adjusted absolute
station values used as control in the various adjustments
and their initial values.

The value in ugal to be added to
the initial station value to arrive
at the adjusted station values
IBG/GSS Station

Code Name ADJ. A ADJ. B ADJ. C
119504 MrTonald Obs. -31 -7 -7
119503 McDonals Obs. -30 -13 -15
081507 Miami 18 4 4
131326A Holloman -2 7 4
119C03 Mt. Evans 40 18 21
119C01 Trinidad -27 -31 -26
11994HK Denver 35 29 27
15505D Boulder 29 21 20
155v01 Casper -22 -27 -26
12172A San Francisco | -5 -7
15221A Boston -11 -6 -6
15560A Bismarck -16 ] 0

ADJ. D ADJ. E ADJ. F

119504 McDonald Obs. -1 -29 -5
119503 McDonald Obs. -~14 — —
03150C Miami — 3 —
11926A Holloman 11 -9 -3
119C03 Mt. Evans 29 — —
115Co01 Trinidad -21 — ——
11994H Denver 55 36 12
15505D Boulder -42 24 —
155v01 Casper ' 9 — —
12172A San Francisco — 21 —
155v03 Sheridan 14 -23 —
15221A Boston 1 4 -5
156E058 Great Falls -15 -33 —
15560A Bismarck —— 3 ——

168 ~ International Gravity Bureau
68S ~ Geodetic Survey Squadron

NOTE: The initial station values for ADJ. A, ADJ. B, and ADJ. € can be
found in Table 8. The initial station values for ADJ. D, ADJ. E, and
ADJ. F can be found in Table 14. Values are given for only those
stations that were used as control in the adjustments.
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ADJUSTMENTS A, B, C, D, E, and F can be seen in Table 15.

Tests similar to the ones used to compare ADJUSTMENTS B and C were
used to compare ADJUSTMENTS D and F and to compare ADJUSTMENTS E and F.
The tests were used to indicate if the added constraints introduced by
the additional absolute sites, were consistent with the four common
absolute sites used in ADJUSTMENT F. Using the information in
Table 14, at the 85X significance level, the test statistics, Fl, for
comparison of ADJUSTMENT D and F and the test statistic, F2, for
comparison of ADJUSTMENT E and F, were computed. The values obtained
were Fl = 25.747 and F2 = 40.138 with F = 2,0 and

7,3333,0.95
2 2.1. These rasults indicate that the additional

F6,3333,0.95
absolute sites constrained {n ADJUSTMENT D and E were not consistent
with the four absolute sites constrained in ADJUSTMENT F.

The effect on the adjusted station values becomes apparent when the
difference batween the three adjustments are compared. Figure 26 shows
t;o di fference in the station values of ADJUSTMENT E ~ ADJUSTMENT D.
Similarly, Figure 27 and Figure 28 showus the difference in station
value of ADJUSTMENT D — ADJUSTMENT F and ADJUSTMENT E — ADJUSTMENT F
respectively. It {s apparent from Figures 26-28, that some sort of
linear trend with respect to the value of gravity exist for these
differences. The linear trend could be caused by some nonlinear scale
factor relationship for the gravity meter which is a function of the
gravity at the station or, more likely, by an inconsistent set of

absolute station values. As uith any gravity base station network, any

error in the value of the absolute stations is absorbed directly into
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‘he scale factor terms for the gravity meters used. The detection of
iad or inconsistent absolute values is very difficult, especially when
‘here might be more than one errant station value. For example, as can
1@ seen in Figure 26, Miami and Bsimarck, two stations whose values
lere determined only by the Italians, appear to be inconsistent with
‘he other absolute sites. But from the information in Table 15 for
IDJUSTMENT E, these two stations appear to be consistent with the other
itations determined by the Italians. The apparent inconsistency of the
ibsoclute determinations makes it very difficult to check how well
rarious mathematical models for the gravity meter behavior perform
)ecause the control for the gravity network is provided by the

nconsistent absolute gravity station values.
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GRAVITY VALUES IN MILLIGALS

006086
008008
00L086
009086
00s08é
00n008
oocoes
002008
oo1088
000008
oDesLe
ooests
ooceLs
0096L8
00s6L8
00NGLS
gocsLs
oozeLe
gotsLs
000648
00688L6
0088L8
ooLeLs

YEEEEENSEEEEEEEERERE
0 -
- A
PP i A
A?lLr&Hm”
*.h#
o
[ ;]
)
] o
4 : X
b\bJW
cooococee 2888988828888 8
755“32-['-..-.-...-

S3NTWA NOILBIS 031SNACOY J0 STUIOUIIW NI 3IIN3¥ISIN0

960900
9806800
980700
980600
980500
900800
960300
9080200
980100
900000
979900
979000
979700
979600
979500
979400
979300
979200
979100
979000
978900
976800
976700

GRAYITY YALUES IN MILLIGALS

CANEE STRURLS GINOVE WNALIVE GIT0h ¢« MANER K-> (VAEER ¢ SHEND ¢ TWANW

Figure 26 —~ Plot of the difference between adjusted station values for

ADJUSTMENT E — ADJUSTMENT D
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GRAVITY VALUES IN NILLIGALS -

006086
008008
ooLogs
009008
005086
00h008
ooeo0s
002068
001086
000088
0066L6
0006L6
ooLeLs
0ossLe
00s8L6
ooneLs
ooceLe
oo2eLe
ootsLs
000sLs
ooseLs
00008L6
ooLoLs

130

110

100
90
a0
70
60
S0
50
0
20
10

~10

980700

980300

9719900

97%000
879700

979800

879500

279400

979300

979200
979100

979000
978900

970800
970700

[
N
-

SINTWA NOLLIVIS OILSATOV 40 SWOOUIIN NI INN24IO

*~ L v > L] ~ - o

o
-
)

o
~n
.

GAAVITY VALUES IN MILLIGALS

VS VNS NI AIDELSN MM ¢ > IARER X < VAR ¢ <> NP ¢ YR

i I e

Figure 27 — Plot of the difference between adjusted station values for

ADJUSTMENT D - ADJUSTMENT F

- m




183

GRRVITY VALUES IN MILLIGALS
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CHAPTER SEVEN

LONCLUSIONS

To obtain the value of gravity for stations in a gravity base
station network established by gravity ties made with LaCoste & Romberg
'G' gravity meters requires that an adequate model be produced that can
be used to represent the gravity meter's behavier. For networks having
a sufficiently large number of stations spanning a wide range of
gravity values, such as the United States Gravity Base Station Network
uﬁich includes the Mid—-Continent Calibration Line, » model has been
developed which will permit the actual counter readings to be used
directly as the observables. This model is.basod on the ability te
approximate the gravity meter's Calibration Table 1 information by
means of a first order polynomial term plus sinusoidal terms. The
first order polynomial term and long wave length sinuscidal term, when
determined for the range of the observations made for the United States
Gravity Base Station Network, resulted in a RMS of the least square fit
to the gravity meter Calibration Table 1's values in milligal of better
than 10 Ugal for most of the gravity meters used in the network. The
computer program used in the adjustments was developed so a linear
drift rate term could be included in the mathematical model. However,

since physical axplanation for the drift in a gravity meter is a series

184
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of small tares occuring at random times, the drift term was not
included in the adjustment model used.

With this type of medel, including additional sinusoidal terms is
relatively easy. These additional terms are used to represent any
periodic screw error effect that might be present in a gravity meter.
Due to the construction of the gravity meter's gear box, there is the
possiblity that sinusoidal terms having periods of 1206, 1206/17,
134/17 and 1 counter units could exist for gravity meters having the
old gear box. For those gravity meters having the new gear bex,
periods of 220, 220/3, 22/3 and 1 counter units are possible. In
addition, periods of half those values are also possible. However, it
became apparent that the most likely cause of a periodic screw error
effect in the instrument results from the contact between the jewel
press fit in the measuring screw and the spherical metal ball at the
end of the lever linkage assembly. If the fit between these two parts
is not perfect, a type of periodic effect could easily be introduced.
The period of this effect would be 1206/17 or 220/3 counter units
depending on which gesr box was installed in the gravity meter.

This study indicated that when a periodic term having a period of
1206/17 counter units was included in the model for the gravity meter,
amplitudes as large as 18 Lgal were found. However, most amplitudes
were below 10 ugal. This is far less than the values predicted by
Harrison and LaCoste [1978] of 35 to 50 ugal. This does not mean that
periodic screw error effects as large as 35 to 50 pgal do not exist.

It only means that of the 14 different gravity meters used in this
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study for which there appeared to be sufficient observations to permit
solving for the periodic screw o;ror term, none exhibited any large
periodic screw error amplitudes.

This study alse indicated that the behavior of the gravity meters
appears to be quite stable with respect te time, changing only when
there was an actual change in the components of the meter, such as when
the long lever is replaced. 1t cannot be concluded that the linear
scale factor changes from year to year as has been hypothesized since
there is no aevidence of this occurring. Houwever, the selection of
which absolute sites are used as the control for the netuwork has a
great influence on the value of the linear scale factor determined.
This is because an errer in the value of any absolute station
propagates almost directly into the determination of the linear scale
factor term. There is no substitute for good control in a gravity base
station netwerk.

This study indicates that the estimated accuracy of observations
made with a LaCoste & Romberg 'G’ gravity meter is around 0.02 counter
units. The sccuracy of the absolute station determinations used in
this study is probably closer te 20 Ligal than to their reported
sccuracy of around 10 Lig2]l.

For existing gravity base station netwerks for which a
variance—=covariance metrix for the station values exist, an algorithm
was develeped which could be used to determine the gravity tie that
should be made which weuld improve the network the mest in the sense of

minimizing the trace of the resulting variance=covariance matrix of the
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gravity stations used in the adjustment. This algorithm was not
applied to the United States Gravity Base Station Network because the
accuracy of the absolute sites which were used as control for the
adjustment did not appear to be consistent with each other.

The problem of matching station observations with their proper
station site description is real and at times very confusing. The
system adopted for identifying gravity statioens, if net uniformly
followed by the organizations collecting gravity meter data, will
result in needless errors and confusion. The actual system use is not
that critical as long as each station is assigned only one unique
identification code. But, it must be used by everyone.

Another problem which should be eliminated is that whenever a change
is made in a station's site description form, the change should be
noted with at least the date that the change was made. Otherwise, old
and possibly erroneous information could be used.

This study leaves many areas for future studies. The understanding
of how the behavior of the LaCoste & Romberg 'G' gravity meter could be
modelled as the range of the observations gets larger needs to be
investigated. If the Calibration Table 1 information cannot be
adequately modelled with a single sinusocidal term for a large range,
then the use of some type of piece wise c;ntinuous curve could be
investigated. Methods are needed that will permit during the
calibration of the gravity meter detection of periodic screw error
effects. This would inveolve investigating periods other than 1206/17

counter units. However, only periods which have some physical reason
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for existing should be considered.

The modelling of the other possible systematic effects caused by
such things as changes in the distribution of the mass of the
atmosphere, changes in the grounduwater level, and possibility of
instrumental drift needs to be studied further. However, the backbone
of any future studies rests on the ability to obtain adequate control
for the gravity base station netuwork. A set of consistent absolute
station gravity values ias essential; otherwise, wrong coenclusions will

almost surely result.
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APPENDIX A

Formation Of Weight Matrix For A Trip

In the formation of the weight matrix for the gravity observation
equations, time can be saved in the formation of this matrix by
recognizing the pattern on the matrices used to form it. For each
trip, the weight matrix, H-'. needs to be formed from the matrix of
partials with respect to the observation, B, and the covariance matrix

of the observations, ZL s where
b

M= BZLbBt (A.1)

-1 t -1
M (BZLbB ) (A.2)

and the structure of B has the form

b, -b, .
by b, 0
n-18n ™ S (A.3)
O bn--2 -bn-l
i bn-l -bn‘

where n is the number of observations and bi is the magnitude of the
partial with respect to the observstion, i.

Assuming that the observations made with an instrument are

independent and have the same accuracy, then ZL can be written as
b
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L, =k I (A.4)
Lb n °n
where
k ~ is a scalsr and has the value of the variance of each
observatien,
1 - is an nxn identity matrix.
Rewriting squation (A.1) as
M= k(B8%) (A.S5)
where the structure of BBt has the form
r W22 2 b
b.|+b2 b2 c}
2 2,2 2
bz b2+b3 b3
t “e.
= (A.6)
B8 b2 b2 a2 b2
() n-2 “n-2 "n-1 n-1
nl 2 2
bn-l bn-l+bn
{ )
when both sides of equation (A.5) is inverted, H- becomes
W' =L (ss%)” (A.7)

1f the pariials with respect to the observations all have the same

magnitude L, then M can be written as

2

M= kL™Q (A. &)

with the structure of Q being
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Q= e (A.9)

An analytical inverse exists for equation (A.9) [Gregory and Karney,

1968, pp 45—46] of the form

-1 ! c (A.10)

where n is the order of Q and the elements of C are given by the

relationship

= = | - ] H (A.11)
ci.i Cj' i(n=j+1) i<
Thus M~! has the form
w! - | c (A.12)

(n + I)kLz
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APPENDIX B

Eormation Of Ihe Normal Equations

For efficiency, the contribution to the normal equations is based on
performing only non-zero multiplication. The non—zero partisls with
respect to the parameters are stored on a file that can be sorted with

a 16 byte structure like

BYTES VALUE TYPE

vl 8 V = non=zero partial with respect floating point
to the parameters number

9-10 R — equatien number within a trip integer

of the partial

11-12 C parameter number associated integer
with the partial

13-14 T —= trip number integer
15~16 S -~ sequence number of partial integer
within a trip :

The misclosure vector, W, is stored sequentially in an array in trip
number, aequation number order.

The file of non—zero partiasls are then sorted on T, C and R in
ascending order. MWith the non—zerc partials {n this order, the
non~zero elements of can be formed efficiently and each olomcntbformed
is saved on another sortable file with the same structure desribed

above. $Since the structure of H.1 is a block diagonal matrix with a
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block for each trip, the non-zero contribution to Atn-‘ needs to be
computed only for each trip where i is the trip number.

t -1

To compute AtH-IA and ATM W efficiently, all non-zero elements of

Atn-1 are sorted on R, T and C in ascending order and all non-zere
elements of A are sorted on C, 7 and R in ascending order. Then if row

tH-‘ were brought into core, the

by row, a row of non—=zero elements A
contribution to the corresponding row of the normal matrix, N, could be
computed from the non—zero elements of A. N is the relationship
Atn-1A. As each rou's contribution was completed, it would be saved.
At the same time, the contribution to U, which is the relationship
At~ W, would be computed.

Since the normal matrix, N, is stored in a sub=block form, a block
of rows of the non—zero elements of AtH-' sre brought into core and a
block of rows of N and U are formed and saved. Thus the largest array

required would have (number of rows in 3 block) times (number of

parameters).




APPENDIX C

Compytation 9f Ihe Variance Of Residyals

The computation of the covariance matrix of the residuals requires a
huge amount of computational effort. However, if only certain
covariances of the residuals are desired, the computational effort
required can be censiderably reduced by taking advantage.of the pattern
and sparse matrices invelved.

For the combined mathematical model F(Xa.La) = 0, it can be shomn

that from its linearized form
AX + BV + W =0 (C.1)

that the least square solution gives the residual vector as

ve-p et ax + W) c.2)
1 where
:
v M- (8] 8t)"! (c.3)
L
P b
z X = - (A7 Ta) " Tatn "My (.4
f
& J
- 8y substituting equations (C.3) and (C.4) into equation (C.2) gives
y
& 4
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1

verp et (1 - aatuta) Aty c.5

The variance and covariance propagation for a linear function given

in equation (C.5) expressed as

V = G(W) (C.6)

results in the covariance matrix for the residuals of

36 aG \t
QV’(W)QW(W) c.7
where
%& = P lgt (1 - a(atnTtA) AT c.&

‘Bt = M (C.9)

Qw-ap'

Substituting equations (C.3) and (C.9) into equation (C.7) yields

Q = P18t (™! - mla(aM ) At )] (c.10)
tetting M = M = M AAtM 1" TAtM™! then equation (C.10) can be
written as

Q = p-lgt g P! (C.11)

1

Exploiting the fact that P” is a diagoni.l matrix and the B matrix is
sparse and has a definite pattern, it can be shown that the covari:nce

for a8 residual is given by one of the following relationships:
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02 = kb2 (W, +m. ., 2m,_. ) 1<j<n (€.12)
Yi; LR B i=1,j-1 i=1,]
o2 =k.bm (c.13)
v 171 N :
"
02 = kb (C.14)
v 1"n "n~1,n-1 )
nn
2 - - -
ov]j klbibj( m, . ml,j-l) (C.15)
2 k,b,b.( m m m m ) i
g = m.. +m, - m. . . 1<i<n (C.16)
i 170 ij i=1,j=1 ii i=1,] 1<j<n
a\zll = kbl My C.17)
n
02 = k,b.b (m, -m ) 1<j<n (C.18)
Voo~ 0i0nt Tt T Ry nm J
where
k -~ is the variance of the observations for a trip.
n - is the number of observations for the trin.

m =~ {8 the sub-block of M associated with the trip.

The M matrix can be partitioned as follows

e P " Py P P T U P Ry P P T
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[ o | ! i
Mo ]
___r:.f.__ [ S —
Mo | |
....._L_z.|_-.,.__..'---
| 1
[ " ] i
L rd : : .. | t
M= (C.19)
}
F-- T “iL: -4---
| ! IMt'l‘
A S U P P R
' ! | -y
i
! : : , b

where 1 is the number of equations formed for a trip.

If the variance of the residuals is desired, then only the
tridiagonal elements of M are needed which cuts down on the amount of
computation required.

How to obtain the tridiagonal elements of M will now be discussed.
Remembering that M is a block diagonal matrix with one block for each

trip and the size of each block is equal to the number of equations

-1 1,,-1,¢t,.-1

! t MTATMT, the ma jor

formed for the trip and that M = M ' = M 'AA™M™

effort is in computing the tridiagonal contribution to M of

H-‘A(AtH-IA)-lAqH-I. S$ince both (Atr‘l.lk).1 and the non—zero elements

of Atﬂ-1 are available from the adjustment, it becomes a matter of what

is the best way of obtaining the tridiagonal contribution.
1

tH- on their columns and rows

By sorting the non—zero elements of A

in ascending order, the multiplication required to form the elements of

AT a1 can most efficiently be done. Each element's value

along with its row and column in (AtM~1a)=TatM™1 are saved on a
sortable file and then sorted in column, row ascending order. To
compute the required tridiagonal elements, the appropriate columns of

-1 t -1 -1t -1

M Aand (AM A A M are brought into core, the multiplication
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performed and the appropriate tridiagonal elements are subtracted from

" and the variance of the residual is computed.

i A > A SO TR S S U R Ny ._;J







